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he semiconductor industry is currently investigating the value of reduced 
instruction set computers, or RISCs, for computationally bound applica- 
tions such as engineering workstations, Unix-based multitasking/ 

multiuser systems, and sophisticated embedded controllers. However , RISCs 
are not new. Through their use in mainframes, RISCs have long demon- 
strated performance that is superior to that of superminicomputers and PCs. 

In very simple terms, a RISC has a small, streamlined instruction set that 
operates at higher speeds than other techniques. Dividing a job into small 
parcels that can be efficiently executed by these simple instructions provides a 
performance advantage over conventional microprocessor techniques. 

Actually, this explanation is a gross oversimplification because the perfor- 
mance of a RISC depends upon its entire support system. For the sake of 
analogy, consider a simple adder circuit built with emittercoupled-logic 
(ECL) technology. The circuit can perform an add operation in just a few 
nanoseconds-perhaps less (a nanosecond is one billionth of a second). 
However, problems arise in the process of adding the two numbers to the ad- 
der circuit and dealing with the result once it is calculated. If feeding the adder 
circuit takes a lot longer to perform than the add, you don’t gain anything by 
making a very fast adder circuit. Likewise, if a processor has a very rapid pro- 
cessing speed-but the memory system causes wait states due to access-time 
restrictions-processor performance becomes a moot point. 

Note that the discussion of any RISC system involves much more than an 
examination of a very high speed computing machine. Designing an 
economical RISC platform requires integrating the processor into the 
memory-system architecture as well as generating very efficient, highly op- 
timized machine code. 

With these principles in mind, Motorola designed and implemented the 
RISC 88000 system in high-speed, complementary metal-oxide Semiconduc- 
tor (HCMOS) technology. This technology now allows cost-effective 
economical fabrication of chips for RISC devices. The 88000 family 
makes small mainframes economically available as individual engineering 
workstations. 
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Performance 
Actual 20-MHz 88000 systems turn in performance 

ratings equivalent to 14 to 17 VAX million instructions 
per second (MIPS). They also achieve benchmarks of 
38,000 Dhrystones/second. The system's floating-point 
unit (FPU) is rated at 16.5 million Whetstones/second. 
Both integer and floating-point instructions can achieve 
burst rates equal to the clock frequency. 

Multiprocessing 
Systems with more than one processor offer addi- 

tional performance without significantly impacting the 
bandwidth requirements of the memory system. The 
88000 architecture specifically includes hardware to 
facilitate the implementation of multiprocessor sys- 
tems. Figure 1 is a block diagram of an 88000 system, 
which functions as an individual processing element. 
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Figure 1. The 88OOO system block diagram. 
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The memory bus (M bus) interfaces two 88200 cache 
memory management units (CMMUs) to the memory 
system. The M bus also externally connects to other 
processing nodes and allows them to share a common 
memory. Since one CMMU can share a common block 
of data in a multiple-node system, designers used a 
hardware method to ensure that all nodes have only the 
most current data. If one node modifies shared data, all 
other nodes automatically invalidate the same entry. 

Another case arises when data contained in just one 
cache has been modified. The corresponding external 
memory location may not have been updated. If another 
processor tries to access this “stale” data, the node con- 
taining the current data automatically updates external 
memory before allowing the second processor to pro- 
ceed. Once memory is updated, the original access pro- 
ceeds correctly. This procedure solves the problem of 
passing stale data between nodes. Because stale data is 
automatically invalidated in hardware, the software 
operating system can devote its attention to controlling 
the system-rather than checking multiple copies of 
data for currency. 

The CMMUs also provide an arbitration network on 
the M bus so that multiple-memory bus masters can 
gain access to global memory. 

Object-code compatibility 
The designers of the 88000 system established object- 

code compatibility for future versions of the 88100pro- 
cessor as a fundamental goal. RISC architectures have 
a regular nature that tends to make upwardly compati- 
ble object code easier to achieve than in architectures 
that use variable-length instructions. For instance, all 
RISC instructions, operations, and registers are 32 bits 
in width. It follows that instruction-set or hardware 
enhancements will strictly adhere to the internal 32-bit 
data paths and registers. To allow variable-length in- 
structions with extension words in a RISC architecture 
would greatly increase the circuit complexity without 
significantly increasing performance. Maintaining up- 
ward objectcode compatibility is very important to 
many users since their most significant investment is in 
software. When source code is not available for recom- 
pilation, object-code compatibility becomes even more 
important. 

Total hardware 
As stated, RISC performance depends not only on 

the speed of the processor but also on its interface with 
the memory system. Performance also depends on the 
memory system itself. The total system consists of the 
88100 processor and the two CMMUs, which interface 
with the global memory system. The processor has a 
Harvard-type architecture, which means that separate 

processor data/address-bus (P-bus) structures inter- 
face to the instruction and data CMMUs. Instructions 
can only be fetched in the code address space that is ad- 
dressed by the instruction unit (see Figure 1). No data 
manipulation can occur in the code address space, pri- 
marily because of a read-only instruction-unit data bus. 
The processor operates on the data contained in the 
data address space. The data unit cannot fetch instruc- 
tions from the data memory. 

The processor generally requires a new instruction on 
each clock cycle of 20 MHz or more. This fact places 
very stringent demands on the memory system. RISC 
systems do not tolerate memory wait states. One wait 
state per instruction fetch degrades the machine perfor- 
mance by 50 percent. Therefore, one must either use 
fast-and very expensive-static RAMS in the memory 
system or employ some type of caching technique. For 
the sake of economy, designers chose a caching tech- 
nique for the 88000 system. This approach allows the 
use of slower-but more dense-dynamic RAMS for 
the main memory. A properly sized cache memory can 
hide most of the wait states from the bulk memory. 

Special function units 
The 88000 architecture can accommodate more than 

one functional block that independently executes in- 
structions. The FPU is an example. Special function 
units (SFUs) sit on the four internal buses. Instructions 
and operands can be dispatched to and results returned 
from any one of the execution units as selected by a 
3-bit field in the instruction. The field allows logical 
room for eight SFUs. The integer unit, although it is ad- 
dressed like an SFU, does not technically fall into that 
category. But because one of the eight possible codes is 
taken up by addressing the integer unit, only seven 
SFUs can be implemented. 

Designers chose the FPU as the first and only imple- 
mented SFU in the 88000 architecture (Figure 1). All in- 
ternal registers physically reside in this functional 
block. Therefore, the FPU could be removed from the 
88 100 without affecting any other portion of the device. 
The sole consequence would be the loss of floating- 
point instructions. This methodology implements a 
building-block strategy. In the future, system designers 
can make selections from an SFU library to include in 
their versions of the 88000 microprocessing unit. 

Overview of the 88100 
Let’s develop an understanding of the internal work- 

ings of the processor before further exploring the sys- 
tem aspects of the devices. 

The 88100 uses HCMOS logic. It qualifies as a RISC 
because of its general attributes of single-cycle instruc- 
tion-execution times and fixed-instruction lengths. It 
also has a smaller instruction set than conventional 
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Figure 2. The 88100 processor block diagram. 

microprocessor techniques as well as a greatly reduced 
number of memory addressing modes. In addition to 
these common RISC attributes, the 88100 implements 
the just-discussed floating-point arithmetic unit on 
chip. The FPU is an actual execution unit for the 
machine that shares its chip real estate. 

Figure 2 provides a detailed block diagram of the 
processor, which employs a dual P-bus system. One P 
bus serves the instruction memory under instruction- 
unit control. The second P bus serves the data memory 
under data-memory unit control. This methodology 
allows simultaneous instruction fetches along with 
data-memory transactions. 

The machine is parallel in nature, that is, it can work 
on up to 15 instructions simultaneously. A11 execution 

units can perform useful work at the same time. Three 
memory transactions can progress in the data-memory 
unit, the instruction unit can fetch one instruction while 
decoding another, the integer unit can execute an in- 
struction, and the FPU can be executing up to nine in- 
structions-all at once. 

Integer -execution unit 
The integer unit shown in Figures 1 and 2 executes 

single-cycle instructions, which essentially include all 
instructions except Multiply, Divide, Memory-Access, 
and Floating-Point. Like other execution units, the in- 
teger unit connects to four separate buses: instruction, 
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Table 1. 
Exception vectors. 

Number Address Definition 

0 0 

1 VBR+$8 
2 VBR+$10 
3 VBR+$18 
4 VBR+$20 
5 VBR+$28 
6 VBR+$30 
7 VBR+$38 
8 V B R + W  
9 VBR+$48 
10 VBR+$50 

11-113 - - 
114 VBR+$390 

115 VBR+$398 

116 VBR+$3AO 
117 VBR+$3A8 
118 VBR+$3BO 
119 VBR+$3B8 
120 VBR+$3CO 
121 VBR+$3C8 
122 VBR+$3DO 
123 VBR+$3D8 
124 VBR+$3EO 
125 VBR+$3E8 
126 VBR+$3FO 
127 VBR+$3F8 

128-511 - - 

Reset (the VBR is cleared 

Interrupt 
Instruction access exception 
Data access exception 
Misaligned access 
Unimplemented opcode 
Privilege violation 
Bounds check violation 
Integer divide error 
Integer overflow 
Error 
Reserved for supervisor and 

future hardware use 
SFUl precise-floating- 

point precise exception 
SFUl imprecise-floating- 

point imprecise exception 
SFU2 precise* 
Reserved 
SFU3 precise* 
Reserved 
SFU4 precise* 
Reserved 
SFUS precise* 
Reserved 
SFU6 precise* 
Reserved 
SFU7 precise* 
Reserved 
Supervisor call exceptions- 

reserved for user definition 

before vectoring) 

* SFU2 through SFU7 are not implemented. Executing an 
instruction that is coded for these SFUs causes a precise 
exception for that SFU. 

source-1 and -2 operand, and destination. The source-1 
and -2 buses carry operands from the register file or the 
embedded field of an instruction to an execution unit or 
SFU. The destination bus returns results to the register 
file. Instructions dispatch along with the associated 
operands to the integer unit, and the result returns on 
the destination bus in one cycle. The system can dis- 
patch a new instruction and receive the result in one 
cycle. Thus, the integer unit can achieve an execution 
rate equal to the clock rate. 

The overall function of the integer unit is to execute 
instructions that are dispatched to it by the instruction 
unit. The integer unit contains dedicated hardware that 
performs specific functions to complete “difficult” in- 
structions in one clock cycle. 

One section calculates numerical results from instruc- 
tions such as Add and Subtract. Another section is used 
specifically for bit-field instructions that set, clear, ex- 
tract, and rotate register fields. A dedicated add unit cal- 
culates target addresses for Branch and Jump instruc- 
tions. As each instruction is fetched, branch-target- 
calculation circuitry uses part of the instruction operand 
to calculate a branch target address, whether the just- 
fetched instruction is a Branch or not. On the next cycle, 
the sequencer (which controls all instruction and data 
flow) determines whether or not the instruction is a 
Branch. If it is, a precalculated target address waits to 
be used as a fetched instruction pointer (described 
later). If the instruction is not a Branch, the sequencer 
simply discards the resultant address calculation. 

The instruction pipeline fetches and partially decodes 
instructions before they are actually dispatched to the 
appropriate execution unit. During each clock cycle, 
the pipeline can fetch one instruction, partially decode 
another one, prefetch any needed operands, and dis- 
patch a third instruction to an execution unit. The pipe- 
lined structure is necessary because there is not enough 
time within one clock cycle to fetch, decode, and exe- 
cute an instruction. However, dividing the job into sec- 
tions and using a pipeline technique moves instructions 
through the instruction pipeline at the rate of one per 
clock cycle. 

The feed-forward unit also speeds program execu- 
tion. When an instruction dispatches to an execution 
unit that requires the result of the previous instruction, 
a problem occurs. There is no time to write the previous 
result into the register file and make that result avail- 
able as an operand for the next instruction. When a re- 
sult is needed, the feed-forward unit solves the problem 
by taking the result of the previous instruction and 
routing it on a source-operand bus on the next cycle. 

The internal buses of the device carry the instruction, 
both operands, and the result-all in one cycle. At the 
speeds that RISCs require, it is not feasible to multiplex 
internal buses. Therefore, designers implemented separ- 
ate buses to carry the instruction, operands, and results 
from the instruction pipeline to the execution units and 
the register file. The 32-bit bus consumes a great deal of 
silicon area, but no other acceptable method exists for 
transferring four 32-bit values in one cycle, as RISC 
technology requires. 

Exception processing 
Exceptions can come from a number of sources. 

Table 1 presents the exception vectors. The exception- 
vector address can be formed in one of two ways. Con- 
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catenating a particular value to the vector base register 
(VBR) of the integer unit forms hardware exception ad- 
dresses. For example, say a data-access exception oc- 
curs. The fetched-instruction pointer points to the ad- 
dress formed by concatenating the 20-bit VBR with 
$18, which contains the first instruction of the excep- 
tion routine. The exception-vector address for instruc- 
tions such as Trap on Bit Set is formed by taking the 
20-bit value in the VBR and concatenating the low- 
order 9 bits of the Trap instruction followed by three 
zeros to form a 32-bit address. This address is the loca- 
tion of the first instruction of the exception routine. 

Exception processing begins when an external inter- 
rupt or any enabled hardware exception occurs. The 
shadow-freeze (Sfrz) bit of the processor-status register 
(PSR) sets. Table 2 shows the integer-unit control regis- 
ters. All trap-time and shadow registers freeze during 
this cycle, including 

the trap PSR, 
the shadow scoreboard register, 
the shadow registers for the Execute, Next, and 

the shadow registers for the data-memory unit. 
All SFUs freeze, that is, instruction processing stops 

in place. The instruction unit fetches the appropriate in- 
struction in the exception-vector table. 

A Trap instruction also initiates exception process- 
ing. However, a Trap allows the machine to synchro- 
nize itself. That is, before the Trap is actually issued, all 
memory transactions and floating-point instructions 
can complete. Then the shadow registers freeze and ex- 
ception processing continues by fetching the instruction 
pointed to by the exceptionvector.(This vector is formed 
by concatenating the lower 9 bits of the Trap with the 
VBR.) 

Multiple exceptions require some additional process- 
ing. Once an exception happens, the Sfrz bit sets and 
the shadow registers freeze. All SFUs are disabled. If an 
exception is taken while the Sfrz bit is set, the shadow 
registers do not reflect the values of the runtime regis- 
ters. All necessary shadow and general-purpose regis- 
ters must be stored in external memory to allow nested 
exceptions. The exception handler software then re- 
enables the SFUs when appropriate, depending upon 
the cause of the exception. Then software clears the 
Sfrz bit. This procedure reenables the shadow mode, in 
which the shadow registers update on a cycle-by-cycle 
basis and become mirror images of the runtime regis- 
ters again. This process repeats each time a nested ex- 
ception occurs. 

To return from an exception condition, the shadow 
registers must contain the appropriate machine context 
for program return. Setting the Sfrz bit, loading the 
shadow registers with the desired values, and executing 
a return from exception (Rte) instruction accomplishes 
the return. The Rte automatically writes the shadow 
registers to the runtime registers and clears the Sfrz bit. 

Fetch instruction pointers, and 

Table 2. 
Register model of the 88100 integer unit. 

Control 
register 

no. Mnemonic Description of register 

0 PID Processor identification 
1 PSR Processor status 
2 TPSR Trap processor status 

3 SSBR Shadow scoreboard 
4 SXIP Shadow Execute instruction 

5 SNIP Shadow Next instruction 

6 SFIP Shadow Fetch instruction 

pointer 

pointer 

pointer 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

VBR 
DMT2 
DMD2 
DMA2 
DMTl 
DMDl 
DMAl 
DMTO 
D M W  
DMAO 

Vector base 
Transaction 2 
Data 2 
Address 2 
Transaction 1 
Data 1 
Address 1 
Transaction 0 
Data 0 
Address 0 

17 SRO Supervisor storage 0 
SR1 Supervisor storage 1 18 

19 SR2 Supervisor storage 2 
20 SR3 Supervisor storage 3 

If further exceptions are prevented by not clearing the 
Sfrz bit while the current exception processes, it is not 
necessary to save the shadow registers. They cannot be 
overwritten. In this case, an Rte automatically returns 
to the normal context without saving or restoring the 
shadow registers. 

FPU execution 
The FPU executes all floating-point instructions as 

well as Integer Multiplies and Integer Divides. As 
shown in Figure 3 on the next page, the FPU is a pipe- 
lined structure. Thus, the result for the instruction is 
not ready for several cycles. However, if a result is 
ready from a prior instruction, it can return to the regis- 
ter file via the destination bus during this cycle. The 
pipelined nature of the FPU allows a new instruction to 
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Figure 3. FPU block diagram. 

be dispatched on each clock cycle as long as a pipeline 
stall does not occur. The system can dispatch a double- 
precision, floating-point instruction on every second 
clock cycle. 

The FPU has two pipelines: arithmetic and multiply. 
The arithmetic pipeline is used for most floating-point 
instructions, including Integer Divide and Floating- 
Point Divide. The multiply pipeline is designed for In- 
teger and Floating-point Multiplies. Both pipelines 
begin and end in a common stage. The type of instruc- 
tion determines which pipeline is used. A single- 
precision, floating-point instruction cycles to the next 
stage of the appropriate pipeline on each clock cycle. In 
the case of double-precision, floating-point instruc- 
tions, the calculations break into upper and lower 
words. Each stage in the FPU must first operate on the 
upper word of the operands and-on the next cycle-on 
the lower word. For this reason, a new double-preci- 
sion, floating-point instruction can only start on every 
second clock cycle. 

Write-back arbitration. A result can reach the write- 
back stage of the FPU in three ways. Integer Multiply 
instructions flow through stage 3 of the multiply 
pipeline and then directly to the write-back stage. 

Floating-point instructions move through stage 5 of the 
multiply pipeline before reaching the write-back stage. 
All floating-point arithmetic instructions use all four 
stages of the floating-point arithmetic pipeline. Three 
instructions can attempt to deliver results to the write- 
back stage in the same cycle. In this case, the arbitration 
network gives priority as follows: Integer Multiply in- 
structions, Floating-Point Multiply instructions, and 
the floating-point arithmetic pipeline. A long string of 
consecutive Integer Multiply instructions stalls stage-4 
instructions in the arithmetic pipeline and stage4 and 
-5 instructions in the multiply pipeline. The arbitration 
network does not grant access to the write-back stage 
until the Integer Multiplies complete. Carefully written 
software generally minimizes the stalling effect of one 
pipeline on another when datadependent code sequences 
occur. 

Destination-bus priority. The FPU connects to the 
destination bus, as do the integer and data-memory 
units. All three units can have a result ready to drive on 
the destination bus during the same cycle. In this case, 
the integer unit has first priority, the FPU second, and 
the data-memory third. When a long string of integer- 
unit instructions occurs, the other two units do not get a 
write slot on the destination bus. Their results have to 
sit until a write slot occurs. 

Various mechanisms exist for assigning write slots to 
the three units that sit on the destination bus. When an 
integer-unit instruction issues, it always receives a write 
slot. If this unit doesn’t need the slot-say an integer- 
unit instruction does not execute during this cycle or the 
instruction does not generate a result-the FPU can use 
that slot. The issuing of each floating-point or data- 
memory-unit instruction creates a write slot if a float- 
ing-point result is ready in the write-back stage. Other- 
wise, this slot goes to the data-memory unit. Whenever 
the instruction pipeline (discussed later) stalls-causing 
no instruction to be issued-the system grants a write 
slot to the highest priority unit that has data waiting to 
go onto the destination bus. 

Floating-point registers. Table 3 illustrates the regis- 
ter model for the FPU. The first nine floating-point 
control registers (FcrO-Fcr8) can only be accessed in the 
supervisor mode and are used for exception processing. 

The floating-point user-status and -control registers 
(Fcr62-63) can be accessed in either user or supervisor 
mode. The floating-point control registers primarily 
hold information on instructions that cause exceptions 
in the FPU. By saving the state of the FPU for the in- 
struction that caused the exception, software can at- 
tempt to correct the condition needing service and re- 
start the FPU. 

The processor hardware updates the floating-point 
exception-cause register to indicate the following 
floating-point exceptions: 
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a conversion to integer overflow, 
an unimplemented floating-point instruction, 
a control-register-privilege violation (attempt to 

access in user mode), 
a floating-point reserved-operand check, and 
a divide by zero. 

The following floating-point imprecise exceptions 
can be signaled as well: 

an underflow, 
an overflow, and 
an inexact condition. 

Very simply put, a precise exception is one that 
signals as soon as the instruction reaches the integer 
unit or any SFU. For instance, the FPU knows immedi- 
ately when it receives an unimplemented opcode. In this 
case, 

the appropriate flag in the exception register sets, 
the exception register points to the offending in- 

struction, and 
the source-1 and source-2 operand high and low 

registers of the FPU store the operands that were issued 
with the offending instruction (see Table 3). 

User-supplied software routines can handle excep- 
tion recovery. For instance, an unimplemented opcode 
can be deliberately inserted in the user’s code. The ex- 
ception handler can decode the opcode portion of the 
instruction and perhaps run a synthesized instruction 
(such as trigonometric or hyperbolic) in software. 

Imprecise exceptions, on the other hand, do not 
signal until the instruction has nearly completed. For 
instance, an underflow (a result with an exponent of 
- 127) does not signal until the result is actually calcu- 
lated. An underflow is not always fatal. For instance, 
the number 1101 x can also be represented as 
11010 x 10 - 126. The uncertainty in the last digit may 
be acceptable for a particular application. It does allow 
program execution to continue. However, by the time 
that the offending instruction generates an exception, 
the instruction pointers no longer point to the instruc- 
tion. This condition makes it impossible to identify the 
actual instruction that caused the imprecise exception. 

The imprecise operation-type register contains the 
information that determines what action to take- 
along with the appropriate instruction information to 
continue execution. That is, the register contains 

the exponent of the inexact result, 
whether the result is single or double precision, 
the 5-bit opcode that identifies the instruction type, 
which exception handlers became enabled, and 
the destination register for the result. 

The floating-point-result high and low registers store 
the mantissa of the actual inexact result. The floating- 
point high register also contains information about the 
rounding modes and the guard, round, and sticky bits 
that can provide additional bits of accuracy in the 

Table 3. 
FPU control registers. 

Floating- 
point control 
register no. Mnemonic Floating-point registers 

0 FPECR 
1 FPHSl 
2 FPLSl 
3 FPHS2 
4 FPLS2 
5 FPPT 
6 FPRH 
7 FPRL 
8 FPIT 

62 FPSR 
63 FPCR 

9-6 1 - 

Exception cause 
Source-1 operand high 
Source-1 operand low 
Source-2 operand high 
Source-2 operand low 
Precise-operation type 
Result high 
Result low 
Imprecise-operation type 
Unimplemented 
User status 
User control 

result. From this information, software can complete 
an instruction that caused an imprecise exception. 

Register file 
The register file (shown in Figure 2) consists of thirty- 

two 32-bit, general-purpose registers that source in- 
struction operands and receive the calculated results. 
The first register, RO, is unique in that the system 
always reads it as zero and cannot write to it. This con- 
dition creates a constant of zero to be used as a source 
operand, which is convenient for such things as synthe- 
sizing single-cycle register-to-register moves. Adding 
any register to RO and storing the result in the chosen 
destination register accomplishes this task. 

The R1 general-purpose register also has a special 
property. The system automatically stores the return 
address for a Branch or Jump to Subroutine in R1. 

The remaining 30 general-purpose registers serve as 
the source or destination of instruction operands and 
results. No hardware conventions exist for the use of 
these registers. Recall that all source operands must 
come either from embedded fields in the instructions or 
the register file. Data in external memory must first be 
loaded into a register in the register file before an in- 
struction can use the data as an operand. 

Scoreboard register 
This register ensures that a source operand is not 

fetched from a register that is currently waiting for a 
result. If operands are available, this hardware scheme 
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Photomicrograph of the 88100 microprocessor. 

lets instructions be dispatched to idle execution units 
while other instructions are in progress. 

The scoreboard register contains 32 bits; one bit cor- 
responds to each register in the register file. When a 
multiple-cycle instruction is issued, a bit sets in the 
scoreboard register that corresponds to the register that 
receives the results of the instruction. The bit clears 
when the result of the instruction writes to the destina- 
tion register. Once the scoreboard bit is set, a subse- 
quent instruction cannot use that register for a source 
operand until the bit clears, which indicates the result of 
a previous instruction has been delivered. If an instruc- 
tion reaches the execution stage of the imtruction 
pipe-and tries to fetch an operand from a register with 
a set scoreboard bit-the instruction pipeline stalls. The 
instruction does not move to the appropriate execution 
unit until the scoreboard bit clears. All integer-unit in- 
structions execute in a single cycle. Therefore, integer- 
unit instructions cannot stall the instruction pipeline. 

While instruction-pipeline stalls are inevitable to 
some degree in any code, properly written software 
takes advantage of the machine’s architecture and ar- 
ranges instructions in the best possible order to max- 
imize the throughput rate. 

Alternatively, the compiler or software writer can 
deliberately install NO-OPs after multicycle instruc- 
tions to ensure their completion before another instruc- 
tion is fetched. 

Scoreboarding provides absolute protection from 
problems that could otherwise arise from out-of-order 
execution models. 

Instruction unit 
The instruction unit shown in Figure 1 fetches and 

partially decodes instructions. All instruction-unit reg- 
isters are accessible through the integer-execution unit. 
The instruction unit is a three-stage, pipelined structure 
consisting of Fetch, Next, and Execute stages. 

The Fetch stage consists of the fetched instruction 
pointer (FIP) and its shadow register (see Figure 2). At 
the beginning of each cycle, assuming no pipeline stalls 
or memory wait states occur, the FIP issues a new ad- 
dress to the memory system. This address is either the 
previous address plus 4 bytes or the target address of the 
currently executing flow-control instruction. 

The second, or Next, stage of the instruction pipeline 
consists of its instruction pointer (NIP), the NIP 
shadow register, and the Next instruction register. The 
FIP of the previous cycle shifts to the NIP, and the cor- 
responding instruction from the memory system re- 
turns to the Next instruction register. At this time, the 
instruction is partially decoded, and any needed oper- 
ands from the register file are prefetched and prepared 
for transfer to the appropriate execution unit. 

The third, or Execute, stage consists of the its in- 
struction pointer (XIP), the XIP shadow register, and 
the Execute instruction register. During this stage, the 
instruction dispatches to the appropriate execution 
unit. If an exception occurs during any cycle, the 
shadow registers that maintain real-time copies of their 
corresponding runtime registers freeze, maintaining the 
value at the time of the exception as well. This process 
saves the state of the machine and allows exception pro- 
cessing to begin immediately. 

Branch-execution enhancement 
The instruction unit handles a special problem 

associated with flow-control instructions. The se- 
quence for a flow-control instruction is the same as any 
other instruction through the instruction pipeline. The 
Branch or Jump is fetched in cycle 1. During cycle 2, the 
Branch or Jump shifts to the Next-instruction slot and 
the branch target address is calculated. A new instruc- 
tion is also fetched during this cycle. During cycle 3, the 
Branch or Jump goes to the Execute slot and the calcu- 
lated target address writes into the FIP pointer, which 
outputs the address onto the external code-address bus. 
A problem arises: The instruction immediately follow- 
ing the Jump has already been fetched and partially de- 
coded. This instruction normally would not be needed 
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because the program has just been directed to another 
spot. Therefore, the instruction in the Next slot would 
normally be invalidated, causing a “hole” in the in- 
struction pipeline. 

By using clever programming techniques, one can 
usually place a useful instruction immediately after a 
flow-control instruction and obtain a useful result. An 
“execute next” option provides this flexibility. This op- 
tion can be enabled or disabled for each individual 
flow-control instruction (Branch or Jump). It causes 
the instruction immediately following the flow-control 
instruction to execute whether the Branch is taken or 
not. 

Now consider the exception-vector table (Table 1). 
The vectors are aligned on double-word boundaries. 
Thus the table can hold two instructions per vector. 
When exception processing vectors to a particular loca- 
tion in the exception-vector table, a flow-control in- 
struction is normally encountered that directs program 
execution. Placing the first instruction of the exception 
routine immediately after the flow-control instruction 
in the table and using the execute-next option lets the 
flow-control instruction point to the second instruc- 
tion. Under these conditions, no hole occurs in the in- 
struction pipeline. 

. 2  2 
1 1 
0 0 

Data-memory unit 

2 
1 
0 

This unit performs all data-memory transactions (see 
Figure 1). 

When a Load, Store, or Exchange instruction is 
issued, the sequencer sends the instruction to the data- 
memory unit. Three register-indirect addressing modes 
address external memory: 

16-bit immediate offset, 
indexed offset, and 
scaled-indexed offset. 

A dedicated add circuit in the data-memory unit 
calculates the logical effective address for these ad- 
dressing modes. This circuit can add a register to a 
16-bit immediate value embedded in the instruction, 
add two registers together, or add two registers together 
after a scaling operation. It performs the last function 
after shifting the second register 0, 1, 2, or 3 places to 
the left to form the effective address. Loads and Stores 
result in multiple-cycle operations, but they dispatch at 
the rate of one memory-access instruction per clock cy- 
cle because of the pipelined nature of the data unit. 

The data-memory unit is a three-stage structure. 
Each stage contains three registers: address, trans- 
action, and data (see Figure 4). The address register 
contains the effective address of the memory trans- 
action. The transaction register contains information 
such as the size of the transaction and its destination 

Source-2 Source-1 
operand operand Destination bus I 

Source-2 1 
operands Address Transaction Data 

registers registers registers 

c 
P address bus 

Stages 

P data bus 

Figure 4. Data-memory unit organization. 

register. The data register contains the data to be 
stored. 

In a typical sequence, a store transaction issues the 
indirect address plus the indexing value to stage 0 of the 
data pipeline in which the effective address is calcula- 
ted. The contents of stage-0 registers shift to stage 1 on 
the next cycle, and the address and data register con- 
tents apply to the data-unit address and data buses. 

Stage 1 is necessary because there is not enough time 
to calculate the effective address, apply the address to 
the external bus, and allow for any appreciable address 
and data setup times for memory. Stage 1 makes the en- 
tire cycle available for a memory access, which greatly 
reduces the bandwidth requirements of the memory sys- 
tem. During the third cycle, the contents of the stage-1 
registers are shifted to stage 2. In the case of a Load in- 
struction, the data returns to the data unit via the data- 
side data bus. 

The only purpose of stage 2 is to maintain a copy of 
stage-1 information for one additional cycle. This 
feature allows the implementation of virtual memory 
systems. If a fault occurs for a memory transaction, the 
memory system returns the fault signal on the cycle 
following the access. Thus, when a memory fault or ex- 
ception signals, the corresponding information about 
the memory access freezes in stage 2 of the data unit. 
All memory faults are not lethal. If the exception is 
caused by a page fault, the handler can find the ap- 
propriate section of the program on disk memory, read 
the required portion of the program into active 
memory, and modify the memory mapping registers as 
needed. The execution handler can examine the regis- 
ters in stage 2 of the data unit and reconstruct the 
memory transaction that previously faulted. After 
retrieving the appropriate portion of the program, the 
memory access can now complete successfully. 
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Table 4. 
Instruction-set summary. 

Mnemonic Description 

Integer arithmetic instructions 
add Add 
addu Add unsigned 
CmP Compare 
div Divide 
divu Divide unsigned 
mu1 Multiply 
sub Subtract 
subu Subtract unsigned 

Floating-point arithmetic instructions 
fadd Add 
fcmp Compare 
fdiv Divide 
fldcr 
fit 
fmul Multiply 
fstcr 
fsub Subtract 
fxcr Exchange floating-point control register 
int Round floating point to integer 
nint Round floating point to nearest integer 
trnc Truncate floating point to integer 

Load from floating-point control register 
Convert integer to floating point 

Store to floating-point control register 

Logical instructions 
and AND 
mask Logical mask immediate 
or OR 
xor Exclusive OR 
cir Clear bit field 

Instruction set 
The RISC instruction set is relatively small in com- 

parison to other kinds of computer architectures. RISC 
instructions are implemented in hardwired logic. One 
must add new instructions carefully. Any additions 
must be absolutely necessary because the logic needed 
to implement them also greatly impacts circuit density 
and size. One must evaluate a new instruction in terms 
of how it can improve overall processor performance. 
Writing compilers and simulation models of the pro- 
cessor-and evaluating the performance of the instruc- 
tion set versus the compiler-accomplishes this pur- 
pose. Table 4 presents the 88100 instruction set. 

Mnemonic Description 

Logical instructions (cont’d.) 
ext Extract signed bit field 
extu Extract unsigned bit field 
ffo Find first bit clear 
ffl Find first bit set 
mak 
rot 
set Set bit field 

Make bit field 
Rotate register 

Load/ Store/ Exchange instructions 
Id Load register from memory 
Ida Load address 
ldcr Load from control register 
st Store register to memory 
stcr Store to control register 
xcr Exchange control register 
xmem Exchange register with memory 

Flow, 
bbO 
bbl 
bcnd 
br 
bsr 
jmp 
jsr 
rte 
tbo 
tbl  
tbnd 
tcnd 

-control instructions 
Branch on bit clear 
Branch on bit set 
Conditional branch 
Unconditional branch 
Branch to subroutine 
Unconditional jump 
Jump to subroutine 
Return from exception 
Trap on bit clear 
Trap on bit set 
Trap on bounds check 
Conditional trap 

RISCs must use many hardware techniques to gain 
performance, even at the expense of creating larger cir- 
cuit sizes. Remember that RISC instructions are very 
elemental; several RISC instructions generally equal 
one conventional instruction. Therefore, if a RISC is to 
obtain significant performance improvements, the ma- 
chine must execute instructions on the highest possible 
percentage of clock cycles. 

As stated, all 88000 instructions are 32 bits wide. The 
system contains no extension words or instructions 
shorter than 32 bits. Instruction-set implementation 
allows for streamlining the internal decoding circuitry. 
Figure 5 demonstrates the encoding pattern for an Add 
instruction. Instruction alignment circuitry is unneces- 
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sary. Bits 31-26 define which instruction executes. 
Bit positions 25-21, 20-16, and 4-0 of an instruction 

always specify the destination source- 1 and source-2 
registers. The internal decoding circuitry does not have 
to locate and align a particular field in the instruction. 
These fields are always in the same place no matter 
what the instruction is. This method reduces the 
amount of circuitry needed to produce a high-perfor- 
mance RISC implementation. 

Arithmetic instructions. These instructions include 
Add, Subtract, Compare, Divide, and Multiply. (Add 
and Subtract have signed and unsigned forms.) Other 
architectures can have several variations of particular 
instructions. For instance, an Add instruction can 
possess different forms that take advantage of the size 
of the data field or the location of the data. The RISC 
methodology does not allow as many forms of instruc- 
tions because the large circuit size would make an IC 
unsuitable for manufacture. 

Certain hardware techniques create a flexible in- 
struction set. Consider the Add instruction, for which 
only two forms exist. The first adds the contents of two 
registers of the register file and delivers the result to a 
third register. The second adds the contents of a register 
to a 16-bit immediate field embedded in the instruction. 
A dedicated bit in the instruction enableddisables the 
overflow exception. Another bit causes the carry bit to 
be included/not included in the calculation. Yet 
another bit causes a carry bit to be generated/not 
generated. Implementing one instruction allows eight 
basic variations of Add: signed and unsigned, with or 
without underflow/overflow, and with or without carry. 

The immediate form of Add is always without carry. 
This exact same scheme generates the eight basic forms 
of the Subtract instruction. 

1 1 1 1 0 1  D S1 0 1 1 1 0 0  I 0 0 0 0  

Condition codes. The Compare instruction calcu- 
lates these codes. It compares two registers with one 
another or one register with a 16-bit immediate value 
embedded in the instruction modes. The results are 
placed in a destination register. Figure 6 shows the en- 
coding pattern for the resultant condition codes. 

Condition codes are not explicitly generated as each 
instruction executes. Condition codes need to be calcu- 
lated only when they are used for a following condi- 
tional flow-control instruction such as a Branch on 
Condition. The circuitry needed to generate condition 
codes in machines with out-of-order execution models 
is quite complex. Therefore, designers implemented the 
Compare instruction to explicitly generate condition 
codes when needed and execute a Branch on Bit Set/ 
Clear to emulate the desired Branch instruction. 

5 2  

Logical and flowcontrol instructions. Bit-field in- 
structions extend RISC instruction sets designed for 
prior machines. Special hardware within the integer 
unit facilitates the execution of bit-field instructions. 

1 1 1 1 0 1  0 0 1 1 1  0 1 0 0 0 0 1 1 1 0 0 1  1 0 0 0 0 0 0 0 1  

Add R7, R8, and R1, Add contents of R8 to R1 and place results 
in R7. 

1 1 1 1 0 1  D S1 I O 1 1 1 1 1 1  0 0 0 0 0  I S2 

D 5-bit field specifying destination register 
I Enableidisable carry in 

0 Enableidisable carry out 
S1 5-bit field specifying source-1 register 
S2 5-bit field specifying source-2 register 

I hs lo Is hi Ige It le gt ne 

Figure 5. Add-instruction encoding. 

eql 

D 5-bit field specifying destination register 
eq Equal 
ge Greater than or equal 
gt Greater than 
hi Higher than 

hs Higher than or the same 
It Lessthan 

le Lower than or equal 
lo Lowerthan 
Is Lower than or the same 

ne Notequal 
S1 5-bit field specifying source-1 register 
S2 5-bit field specifying source-2 register 

Figure 6. Compareinstruction encoding. 

The fields on which these instructions operate can be of 
any width and located anywhere in the word. Bit-field 
hardware can clear, set, extract, and insert fields into 
registers. This hardware can essentially perform a 
single-cycle shift of any number of bits to a field of any 
width. The only limitation is that the amount of the 
shift plus the width of the affected field must be less 
than the width of the 32-bit register. Also, the Rotate 
instruction always rotates the entire contents of a 32-bit 
register, that is, the field width is always 32 bits. 
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Floating-point instructions. These instructions are 
also a modern extension of typical HCMOS RISC ar- 
chitectures. RISCs generally implement only the most 
basic arithmetic, logical, and flow-control instructions. 
Floating-point instructions vary from typical RISC 
techniques because of their multiple-cycle execution 
times. In this particular case, designers implemented 
enough hardware to perform floating-point arithmetic 
in a pipelined, sequential fashion. Placing the FPU on 
the internal silicon buses (which can provide a new 
floating-point instruction on every clock cycle) yields 
superior performance. In fact, the variance from stan- 
dard single-cycle execution is well worth the additional 
cost that results from additional circuit size. 

lthough this article has described a data- 
processing machine that inhabits the very upward A limit of HCMOS-microprocessor design and 

silicon-processing technology, remember that RISCs 
gain performance because developers fine-tune the entire 
system. The system must contain enough of the right in- 
structions to allow compilers to generate efficient code. 
It means nothing if the speed of the processor doubles 
but requires four times as many instructions. A mem- 
ory system that cannot supply instructions to the pro- 

cessor without wait states gains nil. Designers must 
interface each subsystem of the chip design as efficient- 
ly as possible with all other subsystems. 

RISC systems have actually been around for some 25 
years, but their primary application has been in main- 
frames built with ECL technology. Present silicon- 
wafer processing techniques allow very large systems to 
be built in HCMOS technology. 

If history is any guide, some of the emerging RISCs 
will yield additional processing power at an increasingly 
cost-effective level to bring mainframe performance to 
the desktop market. Perhaps the real challenge is how to, 
put that power to work in newandexcitingapplications. # 

Readers can direct questions concerning this article to the 
author at Motorola, Inc., 6501 William Cannon Drive West, 
MSlOE33, Austin, TX 18135-8598. 
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