
The Design of the
88000 RISC Family

Advances in
silicon technology
and RISC design
bring cost-
effective
minimainf rame
performance
with potential
upward
compatibility to
the engineering
workstation.

Charles Melear
Motorola, Inc.

he semiconductor industry is currently investigating the value of reduced
instruction set computers, or RISCs, for computationally bound applica-
tions such as engineering workstations, Unix-based multitasking/

multiuser systems, and sophisticated embedded controllers. However , RISCs
are not new. Through their use in mainframes, RISCs have long demon-
strated performance that is superior to that of superminicomputers and PCs.

In very simple terms, a RISC has a small, streamlined instruction set that
operates at higher speeds than other techniques. Dividing a job into small
parcels that can be efficiently executed by these simple instructions provides a
performance advantage over conventional microprocessor techniques.

Actually, this explanation is a gross oversimplification because the perfor-
mance of a RISC depends upon its entire support system. For the sake of
analogy, consider a simple adder circuit built with emittercoupled-logic
(ECL) technology. The circuit can perform an add operation in just a few
nanoseconds-perhaps less (a nanosecond is one billionth of a second).
However, problems arise in the process of adding the two numbers to the ad-
der circuit and dealing with the result once it is calculated. If feeding the adder
circuit takes a lot longer to perform than the add, you don’t gain anything by
making a very fast adder circuit. Likewise, if a processor has a very rapid pro-
cessing speed-but the memory system causes wait states due to access-time
restrictions-processor performance becomes a moot point.

Note that the discussion of any RISC system involves much more than an
examination of a very high speed computing machine. Designing an
economical RISC platform requires integrating the processor into the
memory-system architecture as well as generating very efficient, highly op-
timized machine code.

With these principles in mind, Motorola designed and implemented the
RISC 88000 system in high-speed, complementary metal-oxide Semiconduc-
tor (HCMOS) technology. This technology now allows cost-effective
economical fabrication of chips for RISC devices. The 88000 family
makes small mainframes economically available as individual engineering
workstations.

26 IEEEMICRO 0272-1732/89/04000026U)1.00 0 1989 IEEE

Performance
Actual 20-MHz 88000 systems turn in performance

ratings equivalent to 14 to 17 VAX million instructions
per second (MIPS). They also achieve benchmarks of
38,000 Dhrystones/second. The system's floating-point
unit (FPU) is rated at 16.5 million Whetstones/second.
Both integer and floating-point instructions can achieve
burst rates equal to the clock frequency.

Multiprocessing
Systems with more than one processor offer addi-

tional performance without significantly impacting the
bandwidth requirements of the memory system. The
88000 architecture specifically includes hardware to
facilitate the implementation of multiprocessor sys-
tems. Figure 1 is a block diagram of an 88000 system,
which functions as an individual processing element.

P-bus control

I Data 1 MMU 1 1 1
cache

88200 CMMUs

P-bus control

Instruction CMMU

Data MMU
cache

M-bus control M-bus control

To global memory

88200 CMMUs

r To global memory

Figure 1. The 88OOO system block diagram.

April 1989 27

88000 RISC

The memory bus (M bus) interfaces two 88200 cache
memory management units (CMMUs) to the memory
system. The M bus also externally connects to other
processing nodes and allows them to share a common
memory. Since one CMMU can share a common block
of data in a multiple-node system, designers used a
hardware method to ensure that all nodes have only the
most current data. If one node modifies shared data, all
other nodes automatically invalidate the same entry.

Another case arises when data contained in just one
cache has been modified. The corresponding external
memory location may not have been updated. If another
processor tries to access this “stale” data, the node con-
taining the current data automatically updates external
memory before allowing the second processor to pro-
ceed. Once memory is updated, the original access pro-
ceeds correctly. This procedure solves the problem of
passing stale data between nodes. Because stale data is
automatically invalidated in hardware, the software
operating system can devote its attention to controlling
the system-rather than checking multiple copies of
data for currency.

The CMMUs also provide an arbitration network on
the M bus so that multiple-memory bus masters can
gain access to global memory.

Object-code compatibility
The designers of the 88000 system established object-

code compatibility for future versions of the 88100pro-
cessor as a fundamental goal. RISC architectures have
a regular nature that tends to make upwardly compati-
ble object code easier to achieve than in architectures
that use variable-length instructions. For instance, all
RISC instructions, operations, and registers are 32 bits
in width. It follows that instruction-set or hardware
enhancements will strictly adhere to the internal 32-bit
data paths and registers. To allow variable-length in-
structions with extension words in a RISC architecture
would greatly increase the circuit complexity without
significantly increasing performance. Maintaining up-
ward objectcode compatibility is very important to
many users since their most significant investment is in
software. When source code is not available for recom-
pilation, object-code compatibility becomes even more
important.

Total hardware
As stated, RISC performance depends not only on

the speed of the processor but also on its interface with
the memory system. Performance also depends on the
memory system itself. The total system consists of the
88100 processor and the two CMMUs, which interface
with the global memory system. The processor has a
Harvard-type architecture, which means that separate

processor data/address-bus (P-bus) structures inter-
face to the instruction and data CMMUs. Instructions
can only be fetched in the code address space that is ad-
dressed by the instruction unit (see Figure 1). No data
manipulation can occur in the code address space, pri-
marily because of a read-only instruction-unit data bus.
The processor operates on the data contained in the
data address space. The data unit cannot fetch instruc-
tions from the data memory.

The processor generally requires a new instruction on
each clock cycle of 20 MHz or more. This fact places
very stringent demands on the memory system. RISC
systems do not tolerate memory wait states. One wait
state per instruction fetch degrades the machine perfor-
mance by 50 percent. Therefore, one must either use
fast-and very expensive-static RAMS in the memory
system or employ some type of caching technique. For
the sake of economy, designers chose a caching tech-
nique for the 88000 system. This approach allows the
use of slower-but more dense-dynamic RAMS for
the main memory. A properly sized cache memory can
hide most of the wait states from the bulk memory.

Special function units
The 88000 architecture can accommodate more than

one functional block that independently executes in-
structions. The FPU is an example. Special function
units (SFUs) sit on the four internal buses. Instructions
and operands can be dispatched to and results returned
from any one of the execution units as selected by a
3-bit field in the instruction. The field allows logical
room for eight SFUs. The integer unit, although it is ad-
dressed like an SFU, does not technically fall into that
category. But because one of the eight possible codes is
taken up by addressing the integer unit, only seven
SFUs can be implemented.

Designers chose the FPU as the first and only imple-
mented SFU in the 88000 architecture (Figure 1). All in-
ternal registers physically reside in this functional
block. Therefore, the FPU could be removed from the
88 100 without affecting any other portion of the device.
The sole consequence would be the loss of floating-
point instructions. This methodology implements a
building-block strategy. In the future, system designers
can make selections from an SFU library to include in
their versions of the 88000 microprocessing unit.

Overview of the 88100
Let’s develop an understanding of the internal work-

ings of the processor before further exploring the sys-
tem aspects of the devices.

The 88100 uses HCMOS logic. It qualifies as a RISC
because of its general attributes of single-cycle instruc-
tion-execution times and fixed-instruction lengths. It
also has a smaller instruction set than conventional

28 IEEEMICRO

Integer Instruction
execution

Stage 4

unit

Stage 4

Stage 5

J

VI

n

2

r

W

0 n

I

XIP XIP shadow register Execute instruction register Pipeline
NIP NIP shadow register Next instruction register - execution -
FIP FIP shadow register sequencer

IS -

registers registers registers
2 2 2
1 1 1
0 0 0

Arithmetic Multiply
pipeline pipeline

I I
Score- Resister 1 board I

file register

Destination i
I unit I I dl

I I

Source-1 bus

I
Source-2 bus

Destination bus

I Address Transaction Data

P data bus 1 from CMMU 1 Instruction-code pipeline "7::;: 1 Data-code t to data and from bus
CMMU pipeline CMMU

FIP -Fetch instruction pointer
NIP -Next instruction pointer

Figure 2. The 88100 processor block diagram.

microprocessor techniques as well as a greatly reduced
number of memory addressing modes. In addition to
these common RISC attributes, the 88100 implements
the just-discussed floating-point arithmetic unit on
chip. The FPU is an actual execution unit for the
machine that shares its chip real estate.

Figure 2 provides a detailed block diagram of the
processor, which employs a dual P-bus system. One P
bus serves the instruction memory under instruction-
unit control. The second P bus serves the data memory
under data-memory unit control. This methodology
allows simultaneous instruction fetches along with
data-memory transactions.

The machine is parallel in nature, that is, it can work
on up to 15 instructions simultaneously. A11 execution

units can perform useful work at the same time. Three
memory transactions can progress in the data-memory
unit, the instruction unit can fetch one instruction while
decoding another, the integer unit can execute an in-
struction, and the FPU can be executing up to nine in-
structions-all at once.

Integer -execution unit
The integer unit shown in Figures 1 and 2 executes

single-cycle instructions, which essentially include all
instructions except Multiply, Divide, Memory-Access,
and Floating-Point. Like other execution units, the in-
teger unit connects to four separate buses: instruction,

April 1989 29

88000 RISC

Table 1.
Exception vectors.

Number Address Definition

0 0

1 VBR+$8
2 VBR+$10
3 VBR+$18
4 VBR+$20
5 VBR+$28
6 VBR+$30
7 VBR+$38
8 V B R + W
9 VBR+$48
10 VBR+$50

11-113 - -
114 VBR+$390

115 VBR+$398

116 VBR+$3AO
117 VBR+$3A8
118 VBR+$3BO
119 VBR+$3B8
120 VBR+$3CO
121 VBR+$3C8
122 VBR+$3DO
123 VBR+$3D8
124 VBR+$3EO
125 VBR+$3E8
126 VBR+$3FO
127 VBR+$3F8

128-511 - -

Reset (the VBR is cleared

Interrupt
Instruction access exception
Data access exception
Misaligned access
Unimplemented opcode
Privilege violation
Bounds check violation
Integer divide error
Integer overflow
Error
Reserved for supervisor and

future hardware use
SFUl precise-floating-

point precise exception
SFUl imprecise-floating-

point imprecise exception
SFU2 precise*
Reserved
SFU3 precise*
Reserved
SFU4 precise*
Reserved
SFUS precise*
Reserved
SFU6 precise*
Reserved
SFU7 precise*
Reserved
Supervisor call exceptions-

reserved for user definition

before vectoring)

* SFU2 through SFU7 are not implemented. Executing an
instruction that is coded for these SFUs causes a precise
exception for that SFU.

source-1 and -2 operand, and destination. The source-1
and -2 buses carry operands from the register file or the
embedded field of an instruction to an execution unit or
SFU. The destination bus returns results to the register
file. Instructions dispatch along with the associated
operands to the integer unit, and the result returns on
the destination bus in one cycle. The system can dis-
patch a new instruction and receive the result in one
cycle. Thus, the integer unit can achieve an execution
rate equal to the clock rate.

The overall function of the integer unit is to execute
instructions that are dispatched to it by the instruction
unit. The integer unit contains dedicated hardware that
performs specific functions to complete “difficult” in-
structions in one clock cycle.

One section calculates numerical results from instruc-
tions such as Add and Subtract. Another section is used
specifically for bit-field instructions that set, clear, ex-
tract, and rotate register fields. A dedicated add unit cal-
culates target addresses for Branch and Jump instruc-
tions. As each instruction is fetched, branch-target-
calculation circuitry uses part of the instruction operand
to calculate a branch target address, whether the just-
fetched instruction is a Branch or not. On the next cycle,
the sequencer (which controls all instruction and data
flow) determines whether or not the instruction is a
Branch. If it is, a precalculated target address waits to
be used as a fetched instruction pointer (described
later). If the instruction is not a Branch, the sequencer
simply discards the resultant address calculation.

The instruction pipeline fetches and partially decodes
instructions before they are actually dispatched to the
appropriate execution unit. During each clock cycle,
the pipeline can fetch one instruction, partially decode
another one, prefetch any needed operands, and dis-
patch a third instruction to an execution unit. The pipe-
lined structure is necessary because there is not enough
time within one clock cycle to fetch, decode, and exe-
cute an instruction. However, dividing the job into sec-
tions and using a pipeline technique moves instructions
through the instruction pipeline at the rate of one per
clock cycle.

The feed-forward unit also speeds program execu-
tion. When an instruction dispatches to an execution
unit that requires the result of the previous instruction,
a problem occurs. There is no time to write the previous
result into the register file and make that result avail-
able as an operand for the next instruction. When a re-
sult is needed, the feed-forward unit solves the problem
by taking the result of the previous instruction and
routing it on a source-operand bus on the next cycle.

The internal buses of the device carry the instruction,
both operands, and the result-all in one cycle. At the
speeds that RISCs require, it is not feasible to multiplex
internal buses. Therefore, designers implemented separ-
ate buses to carry the instruction, operands, and results
from the instruction pipeline to the execution units and
the register file. The 32-bit bus consumes a great deal of
silicon area, but no other acceptable method exists for
transferring four 32-bit values in one cycle, as RISC
technology requires.

Exception processing
Exceptions can come from a number of sources.

Table 1 presents the exception vectors. The exception-
vector address can be formed in one of two ways. Con-

30 IEEEMICRO

catenating a particular value to the vector base register
(VBR) of the integer unit forms hardware exception ad-
dresses. For example, say a data-access exception oc-
curs. The fetched-instruction pointer points to the ad-
dress formed by concatenating the 20-bit VBR with
$18, which contains the first instruction of the excep-
tion routine. The exception-vector address for instruc-
tions such as Trap on Bit Set is formed by taking the
20-bit value in the VBR and concatenating the low-
order 9 bits of the Trap instruction followed by three
zeros to form a 32-bit address. This address is the loca-
tion of the first instruction of the exception routine.

Exception processing begins when an external inter-
rupt or any enabled hardware exception occurs. The
shadow-freeze (Sfrz) bit of the processor-status register
(PSR) sets. Table 2 shows the integer-unit control regis-
ters. All trap-time and shadow registers freeze during
this cycle, including

the trap PSR,
the shadow scoreboard register,
the shadow registers for the Execute, Next, and

the shadow registers for the data-memory unit.
All SFUs freeze, that is, instruction processing stops

in place. The instruction unit fetches the appropriate in-
struction in the exception-vector table.

A Trap instruction also initiates exception process-
ing. However, a Trap allows the machine to synchro-
nize itself. That is, before the Trap is actually issued, all
memory transactions and floating-point instructions
can complete. Then the shadow registers freeze and ex-
ception processing continues by fetching the instruction
pointed to by the exceptionvector.(This vector is formed
by concatenating the lower 9 bits of the Trap with the
VBR.)

Multiple exceptions require some additional process-
ing. Once an exception happens, the Sfrz bit sets and
the shadow registers freeze. All SFUs are disabled. If an
exception is taken while the Sfrz bit is set, the shadow
registers do not reflect the values of the runtime regis-
ters. All necessary shadow and general-purpose regis-
ters must be stored in external memory to allow nested
exceptions. The exception handler software then re-
enables the SFUs when appropriate, depending upon
the cause of the exception. Then software clears the
Sfrz bit. This procedure reenables the shadow mode, in
which the shadow registers update on a cycle-by-cycle
basis and become mirror images of the runtime regis-
ters again. This process repeats each time a nested ex-
ception occurs.

To return from an exception condition, the shadow
registers must contain the appropriate machine context
for program return. Setting the Sfrz bit, loading the
shadow registers with the desired values, and executing
a return from exception (Rte) instruction accomplishes
the return. The Rte automatically writes the shadow
registers to the runtime registers and clears the Sfrz bit.

Fetch instruction pointers, and

Table 2.
Register model of the 88100 integer unit.

Control
register

no. Mnemonic Description of register

0 PID Processor identification
1 PSR Processor status
2 TPSR Trap processor status

3 SSBR Shadow scoreboard
4 SXIP Shadow Execute instruction

5 SNIP Shadow Next instruction

6 SFIP Shadow Fetch instruction

pointer

pointer

pointer

7
8
9

10
11
12
13
14
15
16

VBR
DMT2
DMD2
DMA2
DMTl
DMDl
DMAl
DMTO
D M W
DMAO

Vector base
Transaction 2
Data 2
Address 2
Transaction 1
Data 1
Address 1
Transaction 0
Data 0
Address 0

17 SRO Supervisor storage 0
SR1 Supervisor storage 1 18

19 SR2 Supervisor storage 2
20 SR3 Supervisor storage 3

If further exceptions are prevented by not clearing the
Sfrz bit while the current exception processes, it is not
necessary to save the shadow registers. They cannot be
overwritten. In this case, an Rte automatically returns
to the normal context without saving or restoring the
shadow registers.

FPU execution
The FPU executes all floating-point instructions as

well as Integer Multiplies and Integer Divides. As
shown in Figure 3 on the next page, the FPU is a pipe-
lined structure. Thus, the result for the instruction is
not ready for several cycles. However, if a result is
ready from a prior instruction, it can return to the regis-
ter file via the destination bus during this cycle. The
pipelined nature of the FPU allows a new instruction to

April 1989 31

88000 RISC

Instruction bus Source-1 bus Source-2 bus

Arithmetic - Multiply
pipeline

L

I
Stage 3 a
Stage 4 a
Stage 5 Q

Arbitration network

Destination bus

Figure 3. FPU block diagram.

be dispatched on each clock cycle as long as a pipeline
stall does not occur. The system can dispatch a double-
precision, floating-point instruction on every second
clock cycle.

The FPU has two pipelines: arithmetic and multiply.
The arithmetic pipeline is used for most floating-point
instructions, including Integer Divide and Floating-
Point Divide. The multiply pipeline is designed for In-
teger and Floating-point Multiplies. Both pipelines
begin and end in a common stage. The type of instruc-
tion determines which pipeline is used. A single-
precision, floating-point instruction cycles to the next
stage of the appropriate pipeline on each clock cycle. In
the case of double-precision, floating-point instruc-
tions, the calculations break into upper and lower
words. Each stage in the FPU must first operate on the
upper word of the operands and-on the next cycle-on
the lower word. For this reason, a new double-preci-
sion, floating-point instruction can only start on every
second clock cycle.

Write-back arbitration. A result can reach the write-
back stage of the FPU in three ways. Integer Multiply
instructions flow through stage 3 of the multiply
pipeline and then directly to the write-back stage.

Floating-point instructions move through stage 5 of the
multiply pipeline before reaching the write-back stage.
All floating-point arithmetic instructions use all four
stages of the floating-point arithmetic pipeline. Three
instructions can attempt to deliver results to the write-
back stage in the same cycle. In this case, the arbitration
network gives priority as follows: Integer Multiply in-
structions, Floating-Point Multiply instructions, and
the floating-point arithmetic pipeline. A long string of
consecutive Integer Multiply instructions stalls stage-4
instructions in the arithmetic pipeline and stage4 and
-5 instructions in the multiply pipeline. The arbitration
network does not grant access to the write-back stage
until the Integer Multiplies complete. Carefully written
software generally minimizes the stalling effect of one
pipeline on another when datadependent code sequences
occur.

Destination-bus priority. The FPU connects to the
destination bus, as do the integer and data-memory
units. All three units can have a result ready to drive on
the destination bus during the same cycle. In this case,
the integer unit has first priority, the FPU second, and
the data-memory third. When a long string of integer-
unit instructions occurs, the other two units do not get a
write slot on the destination bus. Their results have to
sit until a write slot occurs.

Various mechanisms exist for assigning write slots to
the three units that sit on the destination bus. When an
integer-unit instruction issues, it always receives a write
slot. If this unit doesn’t need the slot-say an integer-
unit instruction does not execute during this cycle or the
instruction does not generate a result-the FPU can use
that slot. The issuing of each floating-point or data-
memory-unit instruction creates a write slot if a float-
ing-point result is ready in the write-back stage. Other-
wise, this slot goes to the data-memory unit. Whenever
the instruction pipeline (discussed later) stalls-causing
no instruction to be issued-the system grants a write
slot to the highest priority unit that has data waiting to
go onto the destination bus.

Floating-point registers. Table 3 illustrates the regis-
ter model for the FPU. The first nine floating-point
control registers (FcrO-Fcr8) can only be accessed in the
supervisor mode and are used for exception processing.

The floating-point user-status and -control registers
(Fcr62-63) can be accessed in either user or supervisor
mode. The floating-point control registers primarily
hold information on instructions that cause exceptions
in the FPU. By saving the state of the FPU for the in-
struction that caused the exception, software can at-
tempt to correct the condition needing service and re-
start the FPU.

The processor hardware updates the floating-point
exception-cause register to indicate the following
floating-point exceptions:

32 IEEEMICRO

a conversion to integer overflow,
an unimplemented floating-point instruction,
a control-register-privilege violation (attempt to

access in user mode),
a floating-point reserved-operand check, and
a divide by zero.

The following floating-point imprecise exceptions
can be signaled as well:

an underflow,
an overflow, and
an inexact condition.

Very simply put, a precise exception is one that
signals as soon as the instruction reaches the integer
unit or any SFU. For instance, the FPU knows immedi-
ately when it receives an unimplemented opcode. In this
case,

the appropriate flag in the exception register sets,
the exception register points to the offending in-

struction, and
the source-1 and source-2 operand high and low

registers of the FPU store the operands that were issued
with the offending instruction (see Table 3).

User-supplied software routines can handle excep-
tion recovery. For instance, an unimplemented opcode
can be deliberately inserted in the user’s code. The ex-
ception handler can decode the opcode portion of the
instruction and perhaps run a synthesized instruction
(such as trigonometric or hyperbolic) in software.

Imprecise exceptions, on the other hand, do not
signal until the instruction has nearly completed. For
instance, an underflow (a result with an exponent of
- 127) does not signal until the result is actually calcu-
lated. An underflow is not always fatal. For instance,
the number 1101 x can also be represented as
11010 x 10 - 126. The uncertainty in the last digit may
be acceptable for a particular application. It does allow
program execution to continue. However, by the time
that the offending instruction generates an exception,
the instruction pointers no longer point to the instruc-
tion. This condition makes it impossible to identify the
actual instruction that caused the imprecise exception.

The imprecise operation-type register contains the
information that determines what action to take-
along with the appropriate instruction information to
continue execution. That is, the register contains

the exponent of the inexact result,
whether the result is single or double precision,
the 5-bit opcode that identifies the instruction type,
which exception handlers became enabled, and
the destination register for the result.

The floating-point-result high and low registers store
the mantissa of the actual inexact result. The floating-
point high register also contains information about the
rounding modes and the guard, round, and sticky bits
that can provide additional bits of accuracy in the

Table 3.
FPU control registers.

Floating-
point control
register no. Mnemonic Floating-point registers

0 FPECR
1 FPHSl
2 FPLSl
3 FPHS2
4 FPLS2
5 FPPT
6 FPRH
7 FPRL
8 FPIT

62 FPSR
63 FPCR

9-6 1 -

Exception cause
Source-1 operand high
Source-1 operand low
Source-2 operand high
Source-2 operand low
Precise-operation type
Result high
Result low
Imprecise-operation type
Unimplemented
User status
User control

result. From this information, software can complete
an instruction that caused an imprecise exception.

Register file
The register file (shown in Figure 2) consists of thirty-

two 32-bit, general-purpose registers that source in-
struction operands and receive the calculated results.
The first register, RO, is unique in that the system
always reads it as zero and cannot write to it. This con-
dition creates a constant of zero to be used as a source
operand, which is convenient for such things as synthe-
sizing single-cycle register-to-register moves. Adding
any register to RO and storing the result in the chosen
destination register accomplishes this task.

The R1 general-purpose register also has a special
property. The system automatically stores the return
address for a Branch or Jump to Subroutine in R1.

The remaining 30 general-purpose registers serve as
the source or destination of instruction operands and
results. No hardware conventions exist for the use of
these registers. Recall that all source operands must
come either from embedded fields in the instructions or
the register file. Data in external memory must first be
loaded into a register in the register file before an in-
struction can use the data as an operand.

Scoreboard register
This register ensures that a source operand is not

fetched from a register that is currently waiting for a
result. If operands are available, this hardware scheme

April 1989 33

88000 RISC

Photomicrograph of the 88100 microprocessor.

lets instructions be dispatched to idle execution units
while other instructions are in progress.

The scoreboard register contains 32 bits; one bit cor-
responds to each register in the register file. When a
multiple-cycle instruction is issued, a bit sets in the
scoreboard register that corresponds to the register that
receives the results of the instruction. The bit clears
when the result of the instruction writes to the destina-
tion register. Once the scoreboard bit is set, a subse-
quent instruction cannot use that register for a source
operand until the bit clears, which indicates the result of
a previous instruction has been delivered. If an instruc-
tion reaches the execution stage of the imtruction
pipe-and tries to fetch an operand from a register with
a set scoreboard bit-the instruction pipeline stalls. The
instruction does not move to the appropriate execution
unit until the scoreboard bit clears. All integer-unit in-
structions execute in a single cycle. Therefore, integer-
unit instructions cannot stall the instruction pipeline.

While instruction-pipeline stalls are inevitable to
some degree in any code, properly written software
takes advantage of the machine’s architecture and ar-
ranges instructions in the best possible order to max-
imize the throughput rate.

Alternatively, the compiler or software writer can
deliberately install NO-OPs after multicycle instruc-
tions to ensure their completion before another instruc-
tion is fetched.

Scoreboarding provides absolute protection from
problems that could otherwise arise from out-of-order
execution models.

Instruction unit
The instruction unit shown in Figure 1 fetches and

partially decodes instructions. All instruction-unit reg-
isters are accessible through the integer-execution unit.
The instruction unit is a three-stage, pipelined structure
consisting of Fetch, Next, and Execute stages.

The Fetch stage consists of the fetched instruction
pointer (FIP) and its shadow register (see Figure 2). At
the beginning of each cycle, assuming no pipeline stalls
or memory wait states occur, the FIP issues a new ad-
dress to the memory system. This address is either the
previous address plus 4 bytes or the target address of the
currently executing flow-control instruction.

The second, or Next, stage of the instruction pipeline
consists of its instruction pointer (NIP), the NIP
shadow register, and the Next instruction register. The
FIP of the previous cycle shifts to the NIP, and the cor-
responding instruction from the memory system re-
turns to the Next instruction register. At this time, the
instruction is partially decoded, and any needed oper-
ands from the register file are prefetched and prepared
for transfer to the appropriate execution unit.

The third, or Execute, stage consists of the its in-
struction pointer (XIP), the XIP shadow register, and
the Execute instruction register. During this stage, the
instruction dispatches to the appropriate execution
unit. If an exception occurs during any cycle, the
shadow registers that maintain real-time copies of their
corresponding runtime registers freeze, maintaining the
value at the time of the exception as well. This process
saves the state of the machine and allows exception pro-
cessing to begin immediately.

Branch-execution enhancement
The instruction unit handles a special problem

associated with flow-control instructions. The se-
quence for a flow-control instruction is the same as any
other instruction through the instruction pipeline. The
Branch or Jump is fetched in cycle 1. During cycle 2, the
Branch or Jump shifts to the Next-instruction slot and
the branch target address is calculated. A new instruc-
tion is also fetched during this cycle. During cycle 3, the
Branch or Jump goes to the Execute slot and the calcu-
lated target address writes into the FIP pointer, which
outputs the address onto the external code-address bus.
A problem arises: The instruction immediately follow-
ing the Jump has already been fetched and partially de-
coded. This instruction normally would not be needed

34 IEEEMICRO

because the program has just been directed to another
spot. Therefore, the instruction in the Next slot would
normally be invalidated, causing a “hole” in the in-
struction pipeline.

By using clever programming techniques, one can
usually place a useful instruction immediately after a
flow-control instruction and obtain a useful result. An
“execute next” option provides this flexibility. This op-
tion can be enabled or disabled for each individual
flow-control instruction (Branch or Jump). It causes
the instruction immediately following the flow-control
instruction to execute whether the Branch is taken or
not.

Now consider the exception-vector table (Table 1).
The vectors are aligned on double-word boundaries.
Thus the table can hold two instructions per vector.
When exception processing vectors to a particular loca-
tion in the exception-vector table, a flow-control in-
struction is normally encountered that directs program
execution. Placing the first instruction of the exception
routine immediately after the flow-control instruction
in the table and using the execute-next option lets the
flow-control instruction point to the second instruc-
tion. Under these conditions, no hole occurs in the in-
struction pipeline.

. 2 2
1 1
0 0

Data-memory unit

2
1
0

This unit performs all data-memory transactions (see
Figure 1).

When a Load, Store, or Exchange instruction is
issued, the sequencer sends the instruction to the data-
memory unit. Three register-indirect addressing modes
address external memory:

16-bit immediate offset,
indexed offset, and
scaled-indexed offset.

A dedicated add circuit in the data-memory unit
calculates the logical effective address for these ad-
dressing modes. This circuit can add a register to a
16-bit immediate value embedded in the instruction,
add two registers together, or add two registers together
after a scaling operation. It performs the last function
after shifting the second register 0, 1, 2, or 3 places to
the left to form the effective address. Loads and Stores
result in multiple-cycle operations, but they dispatch at
the rate of one memory-access instruction per clock cy-
cle because of the pipelined nature of the data unit.

The data-memory unit is a three-stage structure.
Each stage contains three registers: address, trans-
action, and data (see Figure 4). The address register
contains the effective address of the memory trans-
action. The transaction register contains information
such as the size of the transaction and its destination

Source-2 Source-1
operand operand Destination bus I

Source-2 1
operands Address Transaction Data

registers registers registers

c
P address bus

Stages

P data bus

Figure 4. Data-memory unit organization.

register. The data register contains the data to be
stored.

In a typical sequence, a store transaction issues the
indirect address plus the indexing value to stage 0 of the
data pipeline in which the effective address is calcula-
ted. The contents of stage-0 registers shift to stage 1 on
the next cycle, and the address and data register con-
tents apply to the data-unit address and data buses.

Stage 1 is necessary because there is not enough time
to calculate the effective address, apply the address to
the external bus, and allow for any appreciable address
and data setup times for memory. Stage 1 makes the en-
tire cycle available for a memory access, which greatly
reduces the bandwidth requirements of the memory sys-
tem. During the third cycle, the contents of the stage-1
registers are shifted to stage 2. In the case of a Load in-
struction, the data returns to the data unit via the data-
side data bus.

The only purpose of stage 2 is to maintain a copy of
stage-1 information for one additional cycle. This
feature allows the implementation of virtual memory
systems. If a fault occurs for a memory transaction, the
memory system returns the fault signal on the cycle
following the access. Thus, when a memory fault or ex-
ception signals, the corresponding information about
the memory access freezes in stage 2 of the data unit.
All memory faults are not lethal. If the exception is
caused by a page fault, the handler can find the ap-
propriate section of the program on disk memory, read
the required portion of the program into active
memory, and modify the memory mapping registers as
needed. The execution handler can examine the regis-
ters in stage 2 of the data unit and reconstruct the
memory transaction that previously faulted. After
retrieving the appropriate portion of the program, the
memory access can now complete successfully.

April 1989 35

88000 RISC

Table 4.
Instruction-set summary.

Mnemonic Description

Integer arithmetic instructions
add Add
addu Add unsigned
CmP Compare
div Divide
divu Divide unsigned
mu1 Multiply
sub Subtract
subu Subtract unsigned

Floating-point arithmetic instructions
fadd Add
fcmp Compare
fdiv Divide
fldcr
fit
fmul Multiply
fstcr
fsub Subtract
fxcr Exchange floating-point control register
int Round floating point to integer
nint Round floating point to nearest integer
trnc Truncate floating point to integer

Load from floating-point control register
Convert integer to floating point

Store to floating-point control register

Logical instructions
and AND
mask Logical mask immediate
or OR
xor Exclusive OR
cir Clear bit field

Instruction set
The RISC instruction set is relatively small in com-

parison to other kinds of computer architectures. RISC
instructions are implemented in hardwired logic. One
must add new instructions carefully. Any additions
must be absolutely necessary because the logic needed
to implement them also greatly impacts circuit density
and size. One must evaluate a new instruction in terms
of how it can improve overall processor performance.
Writing compilers and simulation models of the pro-
cessor-and evaluating the performance of the instruc-
tion set versus the compiler-accomplishes this pur-
pose. Table 4 presents the 88100 instruction set.

Mnemonic Description

Logical instructions (cont’d.)
ext Extract signed bit field
extu Extract unsigned bit field
ffo Find first bit clear
ffl Find first bit set
mak
rot
set Set bit field

Make bit field
Rotate register

Load/ Store/ Exchange instructions
Id Load register from memory
Ida Load address
ldcr Load from control register
st Store register to memory
stcr Store to control register
xcr Exchange control register
xmem Exchange register with memory

Flow,
bbO
bbl
bcnd
br
bsr
jmp
jsr
rte
tbo
tbl
tbnd
tcnd

-control instructions
Branch on bit clear
Branch on bit set
Conditional branch
Unconditional branch
Branch to subroutine
Unconditional jump
Jump to subroutine
Return from exception
Trap on bit clear
Trap on bit set
Trap on bounds check
Conditional trap

RISCs must use many hardware techniques to gain
performance, even at the expense of creating larger cir-
cuit sizes. Remember that RISC instructions are very
elemental; several RISC instructions generally equal
one conventional instruction. Therefore, if a RISC is to
obtain significant performance improvements, the ma-
chine must execute instructions on the highest possible
percentage of clock cycles.

As stated, all 88000 instructions are 32 bits wide. The
system contains no extension words or instructions
shorter than 32 bits. Instruction-set implementation
allows for streamlining the internal decoding circuitry.
Figure 5 demonstrates the encoding pattern for an Add
instruction. Instruction alignment circuitry is unneces-

36 IEEEMICRO

sary. Bits 31-26 define which instruction executes.
Bit positions 25-21, 20-16, and 4-0 of an instruction

always specify the destination source- 1 and source-2
registers. The internal decoding circuitry does not have
to locate and align a particular field in the instruction.
These fields are always in the same place no matter
what the instruction is. This method reduces the
amount of circuitry needed to produce a high-perfor-
mance RISC implementation.

Arithmetic instructions. These instructions include
Add, Subtract, Compare, Divide, and Multiply. (Add
and Subtract have signed and unsigned forms.) Other
architectures can have several variations of particular
instructions. For instance, an Add instruction can
possess different forms that take advantage of the size
of the data field or the location of the data. The RISC
methodology does not allow as many forms of instruc-
tions because the large circuit size would make an IC
unsuitable for manufacture.

Certain hardware techniques create a flexible in-
struction set. Consider the Add instruction, for which
only two forms exist. The first adds the contents of two
registers of the register file and delivers the result to a
third register. The second adds the contents of a register
to a 16-bit immediate field embedded in the instruction.
A dedicated bit in the instruction enableddisables the
overflow exception. Another bit causes the carry bit to
be included/not included in the calculation. Yet
another bit causes a carry bit to be generated/not
generated. Implementing one instruction allows eight
basic variations of Add: signed and unsigned, with or
without underflow/overflow, and with or without carry.

The immediate form of Add is always without carry.
This exact same scheme generates the eight basic forms
of the Subtract instruction.

1 1 1 1 0 1 D S1 0 1 1 1 0 0 I 0 0 0 0

Condition codes. The Compare instruction calcu-
lates these codes. It compares two registers with one
another or one register with a 16-bit immediate value
embedded in the instruction modes. The results are
placed in a destination register. Figure 6 shows the en-
coding pattern for the resultant condition codes.

Condition codes are not explicitly generated as each
instruction executes. Condition codes need to be calcu-
lated only when they are used for a following condi-
tional flow-control instruction such as a Branch on
Condition. The circuitry needed to generate condition
codes in machines with out-of-order execution models
is quite complex. Therefore, designers implemented the
Compare instruction to explicitly generate condition
codes when needed and execute a Branch on Bit Set/
Clear to emulate the desired Branch instruction.

5 2

Logical and flowcontrol instructions. Bit-field in-
structions extend RISC instruction sets designed for
prior machines. Special hardware within the integer
unit facilitates the execution of bit-field instructions.

1 1 1 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 1

Add R7, R8, and R1, Add contents of R8 to R1 and place results
in R7.

1 1 1 1 0 1 D S1 I O 1 1 1 1 1 1 0 0 0 0 0 I S2

D 5-bit field specifying destination register
I Enableidisable carry in

0 Enableidisable carry out
S1 5-bit field specifying source-1 register
S2 5-bit field specifying source-2 register

I hs lo Is hi Ige It le gt ne

Figure 5. Add-instruction encoding.

eql

D 5-bit field specifying destination register
eq Equal
ge Greater than or equal
gt Greater than
hi Higher than

hs Higher than or the same
It Lessthan

le Lower than or equal
lo Lowerthan
Is Lower than or the same

ne Notequal
S1 5-bit field specifying source-1 register
S2 5-bit field specifying source-2 register

Figure 6. Compareinstruction encoding.

The fields on which these instructions operate can be of
any width and located anywhere in the word. Bit-field
hardware can clear, set, extract, and insert fields into
registers. This hardware can essentially perform a
single-cycle shift of any number of bits to a field of any
width. The only limitation is that the amount of the
shift plus the width of the affected field must be less
than the width of the 32-bit register. Also, the Rotate
instruction always rotates the entire contents of a 32-bit
register, that is, the field width is always 32 bits.

April 1989 37

88000 RISC

Floating-point instructions. These instructions are
also a modern extension of typical HCMOS RISC ar-
chitectures. RISCs generally implement only the most
basic arithmetic, logical, and flow-control instructions.
Floating-point instructions vary from typical RISC
techniques because of their multiple-cycle execution
times. In this particular case, designers implemented
enough hardware to perform floating-point arithmetic
in a pipelined, sequential fashion. Placing the FPU on
the internal silicon buses (which can provide a new
floating-point instruction on every clock cycle) yields
superior performance. In fact, the variance from stan-
dard single-cycle execution is well worth the additional
cost that results from additional circuit size.

lthough this article has described a data-
processing machine that inhabits the very upward A limit of HCMOS-microprocessor design and

silicon-processing technology, remember that RISCs
gain performance because developers fine-tune the entire
system. The system must contain enough of the right in-
structions to allow compilers to generate efficient code.
It means nothing if the speed of the processor doubles
but requires four times as many instructions. A mem-
ory system that cannot supply instructions to the pro-

cessor without wait states gains nil. Designers must
interface each subsystem of the chip design as efficient-
ly as possible with all other subsystems.

RISC systems have actually been around for some 25
years, but their primary application has been in main-
frames built with ECL technology. Present silicon-
wafer processing techniques allow very large systems to
be built in HCMOS technology.

If history is any guide, some of the emerging RISCs
will yield additional processing power at an increasingly
cost-effective level to bring mainframe performance to
the desktop market. Perhaps the real challenge is how to,
put that power to work in newandexcitingapplications. #

Readers can direct questions concerning this article to the
author at Motorola, Inc., 6501 William Cannon Drive West,
MSlOE33, Austin, TX 18135-8598.

Reader Interest Survey

Indicate your interest in this article by circling the
appropriate number on the Reader Interest Card.

Low 153 Medium 154 High 155

Membership
is part of

1 e being a
professional

Join the IEEE Computer Society, and receive the following benefits:
0 Computer Magazine: Computer comes automatically with mem-
bership. Written, reviewed, and refereed by experts, it features survey
and tutorial articles covering the entire computer field, and departments
such as new products, new product reviews, standards, and a reader
forum called “The Open Channel” (monthly).
0 Technical Committees: Participate in one or more of our 33 tech-
nical committees - networks of professionals with common interests
in specialty areas within computer hardware, software, and applica-
tions.
0 Standards Working Groups: Participate in the development of the
more than 100 standards projects currently sponsored by the society in
such diverse areas as software engineering, local area networks,
microprocessor buses, design automation, programming languages, and
standards definitions.
0 Computer Society Press Books: Receive discounts of up to 50%
on over 600 titles covering a broad spectrum of computer science
topics such as networking, communications, advanced systems, image
processing, security, artificial intelligence, and design automation.
Over 60 new titles are published annually.
0 Conferences and Tutorials: Choose from more than 100 confer-
ences annually, ranging from large industry-oriented conferences re-
plete with exhibits to small, highly interactive workshops. Members
receive special low rates.

For membership information, circle number 202 on
the reader service card.

