
A Comparison of
RISC Archtectures

umerous new RISC architectures have appeared in the market-
place over the past few months. Among these are the Intel i860,
the Motorola 88000, and the Sun Microsystems Sparc architec-

tures. Each claims great performance increases over the existing CISC
architectures and superior performance and features over their RISC rivals.

Here, we compare and analyze the relative strengths and weaknesses of
the three architectures in a number of key architectural areas. Based on this
comparison, we assess their advantages and disadvantages. We seek to
determine whether one architecture is clearly superior or inferior in the long
term because of sufficient advantages or disadvantages i t possesses over the
others.

First we discuss the relative importance of an architectural comparison,
as opposed to a comparison of implementations, and follow i t with a high-
level overview of each of the architectures. We examine, in detail, each of
the architectures on a number of key architectural areas. Finally, we
summarize the overall relative strengths and weaknesses of each architec-
ture. (We also explain some of the specialized architectural vocabulary in
the accompanying Definition of Terms.)

Architecture vs. implementation
Various proposals for drawing the line between computer architecture

and computer implementation have existed since the term “computer archi-
tecture” was first used in the description of the IBM System/360. The
original strict definition proposed by Blaauw’ limited the architecture to
just the instruction set and execution model. All else makes up the implem-
entation. A more-encompassing definition proposed by Stone’ sets the
architecture as the “instruction set and structure down to the functional
modules” of the system. Various other definitions fall between these two
extremes.

For our purposes, however, we adopt the original strict definition. We
define the architecture as only software-visible features-including the
basic instruction set and memory management architectures. It does not
include the specification of the functional modules used to implement these
features.

Evaluating the
newest chips for
your needs can
take some time
and thought.
Here’s help in
deciding what’s
important to
cons i der.

Richard S. Piepho
William S. Wu

AT&T Bell Laboratories

0272-1732/89/0800-0051 @ 1989 IEEE August 1989 51

-
RISC architectures

Byte 0

Definition of Terms

Byte 1 Byte 2 Byte 3

ABI, or Unix System V application binary inter-
face for a CPU architecture, defines a “binary”
system interface standard. This standard supports
compiled application programs running on com-
puter systems that are based on the same CPU archi-
tecture.

An atomic instruction retains exclusive use of a
flag (for example, a semaphore) through completion
of the instruction cycle. Exclusive use of a flag
prevents the flag from being modified while the
instruction operates on it.

Byte-ordering or addressing schemes called big
endian and little endian set the format for sending
data to a microcomputer. Big-endian format sends
the most significant byte first, while little endian
sends the least significant byte first. Figure A shows
big-endian byte ordering for a 32-bit word; Figure B
shows little-endian byte ordering for a 32-bit word.

A small, high-speed cache stores the most fre-
quently used main memory locations. It typically
requires only one to two processor cycles to access
as compared with 10 to 20 cycles for main memory
access. A cache usually can hold 1 Kbyte to 5 12
Kbytes of data.

The cache coherency protocol lets the hardware
(or software) ensure that only one logically correct
value exists for each program variable. In multiproc-
essing systems with each CPU containing a local
cache, multiple copies of program variables can
exist in the system. Each CPU can be attempting to
modify and/or access its copy of the program vari-
ables simultaneously. The program variable copies
could then become inconsistent (with each CPU
seeing a different value of a program variable) with-
out some hardware and/or software ensuring that
some form of consistency or coherency is enforced.

CISC indicates a complex instruction set com-
puter or computing.

A processor’s condition codes, or information
bits, allow the software programmer (and the hard-
ware) to determine whether the result of a compari-
son (or other arithmetic operation) was positive,
negative, or zero and whether it caused an overflow.

A graphics unit, for a given viewpoint, discards
and does not display the nonvisible surfaces of
objects in a scene through a process called hidden-
surface elimination.

A leaf procedure will not call any other proce-
dure.

The hardware unit or component called a memory
management unit, or MMU, translates virtual ad-

Figure A. Big-endian ordering for a 32-bit word.

Byte 3 Byte 2 Byte 1 Byte 0

Figure B. Little-endian ordering for a 32-bit word.

dresses (those seen by software) into physical addresses
(those seen by hardware). The hardware uses the
memory-management translation information (page
and segment table entries) to translate an address. It
then stores the translation information in the TLB. (See
TLB.) In addition, the hardware provides program
isolation and protection (memory protection) by exam-
ining permission data in the translation information.

The MESI memory protocol ensures cache coher-
ency between multiple write-back caches. Any given
cache entry, depending on how it has been accessed,
falls into one of four states: modified (M), exclusive
(E), shared (S), or invalid (I).

A page is the smallest managed unit of a virtual
memory scheme. The system maintains separate vir-
tual-to-physical translation information (and, in some
cases, protection information) for each page.

The Phong-shading graphics technique helps a
graphics unit shade an object. The graphics unit line-
arly interpolates the normals at the vertices of a poly-
gon along the edges. Then it interpolates the normals at
the edges along a scan line. At each pixel along the scan
line, the interpolated normal is used in the lighting
model to determine the color at that pixel. For example,
consider the triangle with four scan lines in Figure C.

Given the normals at vertices A, B, and C, the unit
interpolates the normals along edges AB and AC. Then
using the interpolated normals of the two edges at
horizontal scan line 2 , the unit interpolates the normals
along scan line 2 between the edges to calculate the
shade for each pixel. The unit then repeats the interpo-
lation for scan lines 3 and 4.’

52 IEEE MICRO

Figure C. A 4-scanline figure.

In a register organization scheme called register
windowing a group of register banks (each with, for
example, 32 registers) is arranged as a circular buffer.
During execution, software is only “aware” of a single
bank, or window, of registers. Each procedure call,
however, results in a new window of registers being
transparently allocated to the new procedure, thereby
eliminating the need to save registers on each proce-
dure call. Similarly, as each procedure completes and
returns, the system readjusts the current window back
to the correct window.

RISC indicates a reduced instruction set computer or
computing.

A semaphore is a hardwarelsoftware flag that indi-
cates the status of an activity. Typically, it signals
whether or not a shared resource can be accessed. A
semaphore instruction is a special atomic instruction
for accessing the flag.

Smalltalk is a high-level, object-oriented program-
ming language developed by Xerox PARC.

A spin-on-the-lock situation occurs when a program
is in a loop constantly testing a semaphore to see if
access to the related resource is allowed. Here, the
semaphore functions like a lock.

An SPL level is a Unix interrupt level in a system that
supports multiple levels of interrupts. A higher priority
interrupt would logically be at a higher SPL level than
a lower priority interrupt. Only those incoming inter-
rupts at a higher SPL level than the current one actually
cause an interrupt to be acknowledged by the processor.
Raising or lowering the SPL level thereby increases or
decreases the number of interrupts that the processor

will acknowledge. Running at a high SPL level can
essentially disable the processor from acknowledg-
ing interrupts.

Tagged arithmetic provides a primitive means of
checking for consistency in data type thereby sup-
porting the most frequent cases in the Smalltalk and
Lisp languages. Many languages, including Small-
talk and Lisp, do not provide data type declarations.
Therefore the type (pointer, data) of a program
variable cannot be checked until the program is
executed. Thus the operand type (and whether they
match or not) must be checked before performing
arithmetic instructions.

A test-and-set instruction typically tests a mem-
ory location (flaghemaphore) and updates it accord-
ing to the flag’s value. It is atomic in that after the
flag is read and before the flag is updated, the CPU
executing the instruction will not allow access to the
flag.

A graphics unit transforms a displayed wireframe
drawing into a 3D shaded object by saving only the
lines that form the surface of the wireframe’s poly-
gons and then filling in (shading) between these
lines.

A TLB, or translation lookaside buffer, is the
memory cache of the most recently used page table
entries within the MMU.

A TLB hit rate is the cache hit rate achieved in the
TLB. It reflects the percentage of memory accesses
whose translation information (page table entry) is
contained in the TLB.

Virtual memory is the memory space as under-
stood by the software programmer. It allows each
software application to “see” a uniform, large ad-
dress space independent of the number of applica-
tions running on a system or the actual size of main
memory of that system. The MMU maps, or trans-
lates, virtual memory into the actual (physical)
memory of the system.

A dynamic, RAM-resident z-buffer supports
graphics processing. It has a one-to-one correspon-
dence with a frame buffer. That is, each pixel in the
frame buffer has a corresponding location in the z-
buffer. Each z-buffer location contains the depth (z)
value (the pixel’s distance from the viewer) of the
object being displayed at the corresponding pixel in
the frame buffer. Before drawing a pixel, the graph-
ics unit compares the z value of the object, at that
pixel, with the value in the z-buffer. The unit updates
the pixel only if the object is closer to the viewer than
that indicated currently in the frame buffer.

August 1989 53

RISC architectures

Why architecture instead of implementation? The
RISC architectures offer large performance increases
over currently available CISC architectures. As a re-
sult, almost every coinputer vendor evaluates the RISC
architectures to verify performance claims and to deter-
mine which, if any, best fits its applications and strate-
gic directions. Unlike past chip decisions (for example.
whether to use an 8086 or an 68000) however. selecting
a RISC chip and breaking user software compatibility
with current product lines now becomes a major corpo-
rate decision. Software compatibility is increasingly
important due to the rise of industry-standard applica-
tion binary interfaces (ABls) . In addition, the number
of available user application packages continues to
grow. As a result. changes to an architecture become
very difficult while changes to an implementation
become i nc re as i n g I y e as y .

Changing an architecture. in general, implies that
changes will have to be made to user application soft-
ware. Since most computer vendors do not write all of
their own applications and because of the enormous
number of packages that would have to be updated, the
cost of such a change is very high. In some cases
additions to an architecture could be made in such a
manner that existing user application software is both
forward- and backward-compatible. In general, how-
ever. this is not the case. and the selection of a good
architecture is critical.

Changes to an implementation. however. imply that
only changes to the hardware and possibly the operat-
ing system software will be necessary. Since vendors
upgrade both the hardware and operating system on a
regular basis (to include the latest chip implementa-
tion), the added cost of changes in an implementation
remains small in comparison to the user software
changes. Any limitations in a given implementation can
be (and usually are) reduced or circumvented in the
next implementation. Therefore the selection of a RISC
based on a given implementation is not as critical.

Overall then. the more important selection criteria in
selecting a RISC chip is its architecture, both the cur-
rent and future implementations as opposed to just the
architecture’s current implementation.

Architecture evaluation examples. In the process
of evaluating RISC architectures. we have seen numer-
ous performance comparisons and architectural “evalu-
ations” based on these comparisons. (Most have been
conducted, i t seems, by the companies selling one
architecture or another.) While these evaluations have
been extensive and have pointed out numerous poten-
tial shortcomings, most of these evaluations compare
specific implementations of the architectures in ques-
tion and not the architectures themselves. As a result,
the shortcomings tend to be characteristic of the imple-
mentations and not the architectures. Table 1 lists some
of the architectural shortcomings being put forth for
each of the architectures.

Table 1 .
Claimed Architectural Shortcomings.

1 Architecture Deficiency

i860 N o cache coherency for
internal cache\

88000 No dual-cache tags
Only supports MESI model
of cache coherency

No separate address adder
Sparc Single addreddata bus

In each of these cases, the proclaimed architectural
shortcoming is, in fact, a feature of the implementation
and not a feature of the architecture. The number of
external buses, while a major component of the per-
formance of RISC implementations, is not a feature of
the architecture. The number, speed, and width of
external buses can be (and is) changed from implemen-
tation to implementation without affecting the architec-
ture. The support of cache coherency and the exact form
of that support is, again, a crucial feature in the im-
plementation of multiprocessor systems but is not a
feature of the architecture. Cache coherency can be
added. deleted, or changed without affecting the under-
lying processor architecture.

While many of the analyses being performed may
have concentrated on specific implementations as
opposed to the underlying architecture, we point out
that the architectures are not without shortcomings nor
all equal. On the contrary, the architectures, while on
the surface quite similar, are quite different when ex-
amined in detail.

Overview of architectures
The i860,88000, and Sparc are labeled and marketed

as RISC architectures. They all satisfy the key aspects
of RISC design“ and share some “prominent” RISC
characteristics. These shared key characteristics are:

single-cycle execution (for most instructions),
simple load/store interface to memory,
register-based execution,
simple fixed-format and fixed-length instructions,
simple addressing modes,
large register set or register windows, and
delayed branch instructions.

For some particular target markets, the vendors have
also added sets of instructions that are not frequently
used in general-purpose computing. For example, the

54 IEEE MICRO

i860 provides a set of graphics and vector instructions,
the 88000 offers an extensive set of bit-field instruc-
tions, and the Sparc includes instructions on tagged
data. Probably, to some RISC purists/minimalists, the
addition of such seemingly extraneous instruction sets
disqualifies their classification as RISC architectures.
However, in our opinion, the key point of RISC is the
design philosophy of simplicity and efficiency. That is,
RISC affords an efficient use of hardware resources via
judicious simplification of the semantics of a proces-
sor’s instruction set and encoding of the instruction set.
These special instructions do not preclude the three
architectures from being classified as RISC architec-
tures.

To avoid a proliferation of memory management
architectures, each of the architectures also includes a
memory management definition.

Architectural comparison
In examining the architectures of the i860, 88000,

miscellaneous instructions,
branches,
memory operands and addressing modes,
registers,
data types and alignment,
floating-point units, and
memory management.

Miscellaneous instructions. In addition to the stan-
dard set of RISC instructions, each architecture in-
cludes fairly unique (at least for RISC architectures)
instructions targeted for specific applications. The
special is60 instructions support graphics processing
as well as parallel operation of the integer and floating-
point units. The graphics processing instructions in-
clude an extensive set of both pipelined and nonpipe-
lined instructions, which support z-buffer operations,
Phong shading, and pixel arithmetic. These capabilities
provide superior support in graphics applications that
perform hidden-surface elimination and 3D shading.
However, since these instructions use the software-
visible floating-point pipeline, their use is limited to
libraries and specially coded routines. (We discuss this
aspect further later.) For applications outside of the
graphics area, these capabilities will not provide any
measurable benefits.

The i860 also supports the parallel initiation of the
integer and floating-point units via the dual-instruc-
tion-mode prefix. Use of this prefix causes the next two
instructions to be initiated in parallel (assuming that
one is an integer instruction and one is a floating-point
instruction). For general-purpose applications, which
typically perform few floating-point operations, the
addition of such parallelism does not provide any sig-

and Sparc, we look closely at the following areas:

nificant benefit. Alternatively, for those applications
that perform extensive floating-point operations, such
parallelism provides a significant performance im-
provement. However, since the compiler must generate
different code to take advantage of the parallelism (and
the current compiler does not), it is unclear whether
high-level-language programs will be able to make use
of this capability. To the extent that an application’s
key routines and libraries can be written in assembly
language, much of the performance improvement can
be achieved.

The unique 88000 instructions are an extensive set of
bit-field instructions. They provide the capability to
set/clear and extracthnsert values into bit fields of
variable length and position. (Further discussion ap-
pears later.)

The unique Sparc instructions support tagged arith-
metic. They provide the capability to tag data and
pointers differently so that detection of illegal opera-
tions on the data or pointers can be detected. (We
discuss this further later.)

Semaphores. The three architectures support some
kind of semaphore or atomic test-and-set type of in-
struction. Semaphore instructions are an increasingly
important part of the architecture due to the increase in
the number of shared-memory multiprocessing sys-
tems being developed. Such systems require sema-
phores to ensure that the multiple processors of the
system modify system data structures in a consistent
manner.

The i860 supports a general Lock and Unlock in-
struction pair, which causes the processor to run all of
the instructions between them in an atomic manner with
interrupts blocked. (Note that the hardware enforces a
limit of 32 such instructions.)

The 88000 supports the XMEM instruction, which
loads a memory location, tests it for 0, and if a 0 is
detected, stores the specified register contents into the
memory location. The load/stores are indivisible on the
bus.

The Sparc architecture supports two types of sema-
phore instructions (though early implementations only
support one). The Load-Store Unsigned Byte instruc-
tion reads a memory location and then writes that
memory location to all 1s in an atomic manner. The
Swap instruction causes a memory location to be read
and then replaced with the contents of a specified
register.

In comparison, it would appear that the i860 Lock/
Unlock mechanism provides better support for such
things as counting semaphores. However, in fact, the
actual number of instructions required to implement
such a construct (and therefore the speed to execute it)
is approximately the same for all three architectures.
Both general mechanisms, the Sparc/88000 and the
i860, require multiple instructions to obtain a lock,
increment or decrement the semaphore, and then re-

August 1989 55

RISC architectures

lease the lock. None of the three architectures provides
a single-instruction implementation as in the IBM
S/370.5

Two potential, but small, benefits of the i860 mecha-
nism in an application using the Unix operating system
exist. One is its ability to spin on the lock at a low SPL
level (interrupt level), and the other is its ability to
perform short semaphore or other operations without
raising the SPL level at all. In the first case, the Unix
kernel requires that the SPL level be raised before
attempting to obtain a lock that could also be required
at a higher interrupt level. This requirement normally
means that software on a processor such as the 88000 or
Sparc must raise the SPL level to ensure that it does not
get interrupted after obtaining the lock. (If it were
interrupted, a deadlock situation could arise.) How-
ever, since the i860 Lock/Unlock mechanism blocks
interrupts, the SPL level does not have to be raised until
the lock has been successfully obtained. In addition, if
the work performed on the semaphore or the desired
code is short enough (less than 32 instructions), the
i860 mechanism allows the software to keep the SPL
level the same. In total, however, both of these benefits
are small and not of sufficient size to consider further.

Multiplyldivide. Of the three architectures, only the
88000 provides both of the basic integer multiply and
divide instructions. The i860 architecture supplies a
multiply operation via its FMLOW floating-point op-
eration but provides a library routine for division. The
Sparc architecture, alternatively, provides a Multiply
Step instruction and library routines to implement both
multiply and divide operations. The lack of these in-
structions constrains the i860 and Sparc architectures
in measurably increasing multiplication and division
performance by using any hardware available in future
implementations. As such, i860 and Sparc implementa-
tion performance will suffer on applications that re-
quire extensive multiplication and division operations
unless vendors add the basic multiply and divide in-
structions to the architecture.

Branches. The three architectures have the concept
of a delayed branch. Here the instruction sequentially
following the branch executes independently of
whether the branch is or is not taken. This feature
increases performance of pipeline implementations by
reducing the flushing effect of branches on the pipeline.
Studies have indicated that this technique is successful
in eliminating the branch penalty in 60-70 percent of
the cases.6

In addition, the three architectures have the ability to
essentially annul the execution of the instruction in the
delay slot. This provision eliminates the potential in-
crease in code size identified after having to fill the
delay slot with a NO-OP instruction. Avoiding this
increase reduces the factor by which the RISC code size
will increase over a traditional CISC architecture.'

None of the three architectures incorporates branch
prediction in the instruction set as in the AT&T Crisp8
architecture. Such software prediction would reduce
the branch penalty. However, all of the architectures
could adopt any one of the many hardware branch-
prediction strategies for a particular irnplementati~n.~
While studies have shown that software branch predic-
tion may be more cost effective to implement, the
hardware schemes are not excessively expensive and
do provide very good branch predi~ t ion .~

Additional comparison and looping support. In
addition to the usual branch instructions, the i860
architecture provides additional support for those loop
operations that terminate with a comparison against 0
via the BLA (branch on loop condition code and add)
instruction. This single instruction decrements a
counter, compares it to 0, and then branches on that
comparison-all in one cycle.

In comparison, the 88000 and Sparc architectures
require two instructions (and two cycles) to implement
the same functionality. In the 88000 architecture the
first instruction decrements the counter. Meanwhile the
second instruction compares the result against 0 (creat-
ing an intermediate set of condition codes) and exe-
cutes the branch operation. In the Sparc architecture the
first instruction decrements the counter (and sets the
condition codes). The second instruction executes the
branch operation (based on the condition codes).

However for loops not terminated by a test against 0,
all three architectures require a total of three instruc-
tions to perform the decrement, comparison, and branch
operations. Studies have shown that while loops with a
termination of 0 are common, they are not the predomi-
nant case." Therefore though the i860 provides better
performance in this case, the total performance im-
provement overall will not be large.

Condition codes. The three architectures support
condition codes on which some or all of their branch
instructions perform a test.

The i860 provides both the traditional condition-
code approach and the loop cbntrol instruction just
described, which uses a separate condition code. Un-
like the Sparc and 88000, however, the i860 arithmetic
instructions always set the condition codes. This speci-
fication makes the implementation of more compli-
cated pipeline schemes supporting out-of-order execu-
tion and multiple-instruction executions per cycle more
difficult to implement.

The 88000 architecture departs from the traditional
approach of condition codes held in the processor status
word. Instead it writes status information resulting
from a Compare operation in a general register speci-
fied in the Compare instruction. Conditional branch in-
structions correspondingly test the specified general
register to determine whether the branch operation
should proceed. Given that no separate condition codes

56 IEEEMICRO

offset mode is irrelevant. However, support of the
signed immediate mode provides some extra flexibility
over the unsigned immediate mode.

In the immediate mode, the i860 architecture sup-
ports the 16-bit signed immediate form for arithmetic
operation and 16-bit unsigned immediate form for
logical operation. The 88000 architecture supports the
16-bit unsigned immediate form. The Sparc architec-
ture supports only the 13-bit signed immediate form.
Given that long immediate modes are rarely used, the
difference in the length of immediate modes is irrele-
vant. However, the support of the signed immediate
mode provides some extra flexibility over the unsigned
immediate mode.

It is interesting to note that the above addressing
modes are also the five most frequently used addressing
modes in CISC machines.'** I 3 In fact, the least fre-
quently used address mode of the five, register indirect
with index, has a frequency of only 6 percent.I3

The 88000 also supports index mode with scaling.
This addressing mode simplifies index computation for
accessing halfword arrays as well as word arrays. The
addressing mode is useful for artificial intelligence
languages and scientific computing. However, it will
have a low frequency of usage in a general-purpose
computing environment. Hence, little performance
gain will be seen.

To eliminate the requirement of an additional read
port to its register file, the i860 memory store instruc-
tion does not support the use of register indirect with
index mode. This absence of support introduces asym-
metry to the instruction set and hence an exception to
the compiler. However, based on a CISC-machine
study,I4 less that 4 percent of the second operand and
the destination operand in a triadic operation use the
address mode. Therefore, we see very little perform-
ance impact for the lack of it. For floating-point vector-
processing performance, the i860 supports the autoin-
crement mode for constant stride vector addressing.
Since very little floating-point vector processing oc-
curs in general-purpose computing, we again see very
little performance impact.

Five different
addressing modes can

be synthesized by
each architecture.

exist, future implementations of the architecture will
more easily employ complicated pipelining schemes
supporting out-of-order execution and multiple instruc-
tion execution per cycle.

The Sparc architecture allows many instructions to
set the condition codes. In addition it provides an
explicit Compare instruction and all of its branch in-
structions test the condition codes. Arithmetic instruc-
tions can optionally set the condition codes or leave
them unaffected. These provisions will enable future
implementations of the architecture to more easily
employ the same pipelining schemes as described for
the 88000.

While the traditional method has offered separate
condition codes, arguments have been put forth against
condition codes. They add difficulties to the hardware
design and result in an unorthogonal instruction set.
The 88000 addressed certain concerns" by having the
condition-code bits stored in any specified register, as
described earlier. This requirement minimized any
hardware implementation problems and facilitated the
hardware support of parallel integer and floating-point
operations. It also effectively eliminated yet another of
the few registers that are available to the user. How-
ever, given the magnitude of the difficulties associated
with using condition codes, any additional hardware
that may be required would be small.

Addressing modes. The three architectures share
two basic addressing modes for operand access. They
are base + offset and base + index. With register 0
returning 0 all the time, five different addressing modes
can actually be synthesized. They are:

register: Rx, where x is the register number;
register indirect: (Rx), where x is the register

register indirect with index: (Rx, Ry), where x and

register indirect with immediate offset: offset(&),

immediate, signed and unsigned.
In the register indirect with immediate offset mode,

the i860,88000, and Sparc support 16-bit signed offset,
16-bit unsigned offset, and 13-bit signed offset forms,
respectively. Given that long immediate offset mode is
rarely used, the difference in the length of immediate

number;

y are the register numbers;

where x is the register number; and

Control-transfer address. All three architectures
provide two addressing methods for control-transfer
operations, PC-relative and register indirect. For PC-
relative conditional transfer, the i860 provides 16-bit
and 26-bit offset modes, the 88000 provides 16-bit
offset, and the Sparc provides 22-bit offset. The i860
offers a better range for PC-relative transfers. How-
ever, based on the previously mentioned CISC-ma-
chine study, a 16-bit offset mode sufficiently processes
93 percent of PC-relative branches. A 15-bit offset
mode is sufficient for 87 percent of PC-relative
branches.I4

Given the code expansion due to the RISC architec-
ture and the trend in program-size growth, a 16-bit
offset mode will probably be good for close to 87

August 1989 57

RISC architectures

All three architectures
provide more registers than

their ClSC forebears.

percent of all PC-relative branches. Since 15-20 per-
cent of the instructions executed are nonprocedure call-
related, PC-relative control-transfers, only 2 percent
additional branches are needed to reach the branch
target. The penalty of a shorter 16-bit offset mode is
insignificant.

For unconditional transfer and procedure call or
return, the three architectures provide both register
indirect and PC-relative addressing modes.

Registers. The number of application-usable regis-
ters becomes a key factor in the performance of RISC
processors, given the relative performance penalties
associated with accessing variables in cache and/or
main memory. This factor and the increasingly sophis-
ticated register-allocation schemes of today's compil-
ers form the primary driving forces behind incorporat-
ing a larger set of registers into the architectures of
current processors.". In this area, all three of the
architectures provide substantially more registers than
their CISC forebears. However, the registers differ in
the way they are used and the number that are available.

The 88000 is the weakest in this area with only thirty-
two 32-bit registers for both integer and floating-point
operations. Given that each floating-point operand
typically takes two registers, the effective number of
values that can be contained in the register file is much
less than 32. In comparison, the i860 and Sparc with
thirty-two 32-bit integer registers and an additional
thirty-two 32-bit floating-point registers can hold a
substantially larger number of values in the register
file. Studies have indicated that this increased number
of registers should result in better performance for the
i860 and the spar^.'^

In addition to the 32 integer registers directly ad-
dressable via the instruction set, the Sparc architecture
also supports a register-windowing system. This sys-
tem provides between two and 32 windows of registers
arranged as a circular buffer. (For a detailed explana-
tion see the Sparc Architecture Manual and Patterson
and Sequin.", '*)

Proponents of this and similar register-windowing
schemes argue that the windowing provides a number
of benefits. Among them are:

1) The compiler does not have to savehestore regis-
ters across function calls, thereby increasing the speed
of the function calls.

2) The compiler does not have to be as complex

because it does not have to perform sophisticated reg-
ister allocation.

3) The windowing system provides a mechanism
for providing an increased number of windows in a user
software-transparent manner.

Meanwhile, detractors argue that windowing has
potential drawbacks:

1) The overflow or underflow of the circular buffer
(running out of usable windows) requires that some
portion of the windows must be flushed or filled.

2) Context switches now involve the savehestore
function of significantly more registers than in the
traditional case.

The exact value of a register-windowing scheme
(such as that supported by Sparc) in comparison with
the use of sophisticated register-allocation techniques
(such as those used by the i860 and 88000) has been the
subject of several investigations.16, 17, I 9 The studies
show that the relative performance of the two options is
essentially equal and that the register-windowing
scheme provides better performance in some cases.

The relative disadvantages of the register-window-
ing scheme turn out to be few because the frequency of
overflows/underflows and context switches is small in
comparison with the frequency of procedure calls.
However, not all cases achieved the relative advantages
of the register-windowing scheme due to the newer,
sophisticated approaches to register allocation that take
advantage of program characteristics (such as the high
percentage of time spent in leaf procedures).

In addition to these architectural aspects, a major
contention of the proponents of register allocation is
that the implementation of a register window-based
architecture will suffer from having to support the
register windows. In particular, they point out that the
frequencies of two implementations (one having regis-
ter windows and one having a typical register file) will
not be the same given equal technology because the
register windows will require additional logic in the
critical path. While this contention has yet to be proven
(current Sparc implementations run at frequencies just
as fast or faster than the i860 and 88000 frequencies),
it could affect certain implementations. However,
architectures with register-windowing schemes can
support any number of windows including one (same as
the register allocation approach) or two (depending on
the exact implementation, for example, Sparc requires
two). Any negative effects of windowing in such an
implementation could be reduced or eliminated as
necessary by reducing the window count to a low level.
(Though any "old" code, presumably compiled without
sophisticated register allocation, would run poorly in
such an implementation.)

Byte ordering. The i860 and the 88000 support byte-
ordering formats called big endian and little endian.
The Sparc supports the big-endian format. The selec-

58 IEEEMICRO

tion of the byte-ordering method becomes a data-
compatibility issue with existing architectures. The
Sparc architecture originated at Sun Microsystems Inc.,
where most of the products are Motorola 680x0-based
(big-endian byte order). Big-endian format thus be-
comes the logical choice. Similarly, the Intel 80x86
line supports the little-endian format, a logical choice
therefore for the i860.

The i860 and 88000 support both byte orderings
statically. As a result, data can be exchanged with a big-
endian machine or a little-endian machine without
reversing the bytes or changing the byte numbering.
Thus, the i860 and 88000 provide a migration path for
data and databases generated from machines of either
byte orderings. However, the 88000 AB1 specifies the
big-endian format (Motorola's 680x0 format) for inter-
facing to the operating system. Any application run-
ning in little-endian byte order must somehow swap the
bytes to interface to the operating system. It is not yet
clear what byte order the i860 AB1 will specify. How-
ever, to maintain some sort of data compatibility with
the Intel 80486 line, the i860 AB1 will probably adopt
the little-endian format. Again, any application run-
ning in big-endian byte order must somehow swap the
bytes to interface to the operating system.

Note also that none of the three architectures pro-
vides a complete data-compatibility solution. The
majority of the existing machines supports arbitrary
byte alignment for data, whereas all three architectures
do not. Considering the cost of breaking instruction
compatibility (migrating from CISC to RISC), the data
incompatibility issue is minor.

Data types. The three architectures supply the usual
set of integer data types, namely, byte, unsigned byte,
halfword, unsigned halfword, word, and unsigned
word.

The three architectures also supply the usual set of
ANSI/IEEE floating-point data types, namely, single-
precision and double-precision.20 In addition, the Sparc
supports extended-precision floating-point operations,
giving it an edge for applications requiring additional
precision. While current language standards do not
support extended-precision floating-point data, note
that as RISC implementations approach mainframe
performance the demand for extended-precision
floating-point data will increase.

For different target markets, the three architectures
support additional data types. The i860 supports 8-bit,
16-bit, and 32-bit pixels to provide high-performance
3D graphics processing. The 88000 supports bit-field
data. However, it is limited to data within a word. It has
a much narrower range of applications than the
Motorola 68020 bit-field instructions that operate
across word boundaries. The Sparc supports tagged
data. The support of this data type has been shown to
provide a 10-25 percent execution-time savings for
systems using dynamic data typing, for example, Small-

talk." Since these special data types are really targeted
for specific applications, the support of such data types
and related operations will not have any performance
impact on general-purpose computing.

Floating-point arithmetic. The three architectures
support the ANSIIIEEE Standard 754-1 985 for Binary
Floating-point Arithmeticzo through different levels
and mixes of hardware and software emulations. They
supply the usual set of floating-point instructions,
namely, load/store, integer to floating point, floating
point to integer, add, subtract, multiply, and compare.

The Sparc and the 88000 supply division and square-
root instructions, whereas the i860 supports the divi-
sion and square-root functions via reciprocals, a similar
approach taken by Cray supercomputers. Here, a
Newton-Raphson iterative sequence using the multiply
and reciprocal instructions performs a division or
square-root operation. As a result, i860 implementa-
tions will suffer on those applications that require
extensive division and square-root operations. How-
ever, in general, these operations have low usage fre-
quencies. Measurements taken from an execution of the
SPICE circuit simulator on an MOS memory cell cir-
cuit show that floating-point arithmetic occurs only 12
percent of the overall time.2z Out of that 12 percent,
division occurs only 9 percent of the time. In other
words, the overall usage is 1 percent.

The i860 floating-point architecture supports both
scalar and pipelined modes. However, the pipelines are
exposed. This means that either software compatibility
may have to be broken in the future or a restriction be
placed on future implementations.

The i860 also has a set of instructions that can initiate
an addhubtract and a multiplication, and control the
data paths between the adder and the multiplier pipe-
lines. Vector operations, like multiply and accumulate,
can be synthesized (by controlling the data paths ac-
cordingly) and be speeded up considerably. However,
it is questionable how well a compiler can vectorize and
make use of the exposed pipeline. To take full advan-
tage of the vector processing, an application program-
mer will probably have to make calls to a hand-coded
library of vector-processing routines. Again, the i860
vector/pipeline operations are useful for a particular
market, and we see little vectorizing/performance for
general-purpose use.

Memory management. The three architectures
support fairly traditional memory management archi-
tectures though each provides additional support in
many crucial areas. All three architectures support a
full 4-Gbyte virtual address s p a ~ e . ~ ~ - * ~ While this space
will be sufficient in the near term, all three will have to
deal with larger virtual address spaces in the longer
term (a la HP Spectrumz6 and IBM 801 and PC RTZ7). In
all three cases, retaining compatibility will be a major
architectural challenge.

August 1989 59

RISC architectures

The i860 supplies a 4-Gbyte physical address spec-
trum, while the 88000 supports an 8-Gbyte spectrum
and the Sparc supports a 64-Gbyte spectrum. The i860
and Sparc share their respective address spaces be-
tween the user and the operating system with the exact
boundary not being fixed in hardware. Alternatively,
the 88000 hardware divides the 8-Gbyte space into 4
Gbytes reserved for the operating system and 4 Gbytes
for the user. The ability to directly address spaces of
greater than 4 Gbytes will become increasingly impor-
tant in future systems with multi-gigabyte main memo-
ries and with 32-bit, direct-addressed input/output
buses. Sparc sufficiently addresses this need with its
64-Gbyte address space, while both the 88000 and i860
restrict space to more traditionally sized physical ad-
dress spectrums. Fortunately, both the i860 and 88000
have reserved bits in their page table entries. These bits
could be used to increase their physical address spec-
trum in the future.

The 88000 and the i860 support two levels of address
translation while the Sparc supports three-level transla-
tion. Theoretically, the two-level translation will re-
duce the time to translate the virtual address into a
physical address when the translation cache or the
lookaside buffer does not contain the translation infor-
mation. However, the overall effect is small due to the
high TLB hit rates. A detrimental effect of only having
two levels of translation, on the other hand, is the
overhead (in terms of the number of pages required)
encountered to map the large, sparse address spaces of
processes in the Unix operating system. The adoption
of Unix System V Release 4.0 along with the increased
number of logical segments used in applications (shared
libraries, mapped files, etc.) makes it increasingly
important to reduce the overhead of the page tables
associated with each process.

All of the architectures support a 4-Kbyte page size.
While larger than many page sizes in traditional CISC
architectures, the increased size of applications (as well
as the increased size of RISC-executable files) justifies
the use of a large page size. Even larger page sizes
(more than 4 Kbytes) are good for systems with a large
amount of memory and running relatively few large
applications (workstations). They are not suitable for
systems with a small amount of memory and running
numerous small applications. For a system with a fixed
amount of memory, for instance 8 Mbytes, a 4-Kbyte
page size results in a “pool” of 2,000 pages. An 8-Kbyte
page size results in a pool of only 1,000 pages. For
applications with a large number of small processes,
higher performance will be achieved with systems
holding 2,000 pages in the pool rather than 1,000.

Given the small number of TLB entries available in
the microprocessor implementations of these architec-
tures, only a small amount of virtual address space can
be mapped without incurring TLB miss penalties. If
only pages are supported in a memory management
architecture, a typical TLB implementation with 64

entries will map only 64 X 4 Kbytes, or 256 Kbytes of
memory. While such a mapping size is sufficient for
most user applications with their high degree of local-
ity, it is not enough for large applications or the Unix
kernel, which exhibit a very low degree of locality.
Therefore, support of some larger form of mapping, for
example, segments, is required to provide sufficient
performance. In addition, such large mappings require
large, continuous pieces of physical memory. Many
applications such as the Unix kernel really use only a
portion of multiple mappings (for text and stack).
Therefore, it is important that the mappings not be too
large to minimize the wastage of physical memory.
(Though some of it can be effectively used by double-
mapping this area of physical memory.)

Both the Sparc and 88000 architectures support such
a larger mapping. The 88000 supports 4-Mbyte map-
pings with the option to individually enable or disable
256-Kbyte “chunks” of that mapping. The Sparc, alter-
natively, supports 256-Kbyte, 16-Mbyte, and 4-Gbyte
mappings. The ability of both architectures to effec-
tively map 256-Kbyte pieces of the address space suf-
ficiently addresses the problem of the low locality and
at the same time minimizes the wastage of physical
memory.

The i860, however, does not support any form of
larger mappings. This deficiency will result in a much
lower effective TLB hit rate, which could severely
impact overall system performance in some applica-
tions. Support of some kind of large mapping facility
could be added, however, since this feature is typically
not visible to the user and is hidden by the kernel (the
virtual memory subsystem in Unix V Release 4.0).
Also, the most crucial application of the larger mapping
appears for the kernel when a change from pages to a
larger mapping would be entirely invisible to the user.

The three architectures provide the minimum user/
kernel and read/write protections. Sparc, in addition to
these minimum permissions, also offers a limited
combination of Execute permissions. The addition of
Execute permissions provides Sparc with capabilities
that will be useful in dealing with such things as
dynamic shared libraries.

Overall, the i860, 88000, and Sparc memory man-
agement architectures provide essentially equal capa-
bilities with the exception of the lack of large mapping
support in the i860. The Sparc architecture offers the
most flexibility and possibilities for future growth. But
all three architectures will require significant upgrades
when virtual address spaces of greater than 4 Gbytes
become important.

n summary, examination of the various components
of the overall architectures reveals that each have I some areas that offer better support than the others

and some areas that provide worse support. Table 2
summarizes the assessments of the various components

60 IEEE MICRO

Table 2.
Relative Architecture Support.

Area

General
Unique instructions
Semaphores
Multipl yldivide

Branches
Addressing modes
Registers
Data types
Floating-point
functions

Memory management

i860 88000 Sparc

of the architectures that we examined, the i860, the
88000, and the Sparc. For each of the components in the
table, we indicate whether we found that the architec-
ture was slightly inferior with respect to the others (I),
essentially equal to the others (=), or slightly superior
to the others(>).

The i860 architecture is weaker in the floating-point
area because of the software-visible pipelines, in the
memory management area because of its lack of sup-
port of a large memory mapping, and in the higher math
area due to its lack of a full divide instruction. How-
ever, the 860 architecture is stronger in the branch area
because of its loop control support instruction. The
88000 architecture is weaker in the area of registers
because of the smaller number of registers that the
architecture supports. The Sparc architecture is weaker
in the area of higher math functions due to its lack of
support for full multiply and divide instructions.
However, the Sparc architecture is stronger in the
memory management area because of its more flexible
MMU, or memory management unit, and additional
page permissions.

Of the relative weaknesses that were identified, they
vary in how difficult they would be to change. The lack
of a large mapping in the i860 could be remedied by the
addition of such a construct to the MMU. Since this
construct will most importantly be used by the kernel,
its addition could be made entirely user-software trans-
parent. The software visibility of the floating-point
pipelines in the i860, alternatively, most likely cannot
be addressed without significantly breaking software
compatibility. As in the Sparc case, the addition of a
full divide instruction could be added fairly easily.

The number of registers supported in the 88000
architecture would be very difficult, if not impossible,

to increase because of the lack of extra, unallocated,
bits within the instruction encodings. The lack of full
multiply and divide instructions in the Sparc architec-
ture could be fairly easily addressed using an available
free opcode number. Such a change could provide both
forward and backward software compatibility (assum-
ing the old implementations trapped onto the new
instruction). However, new code would run at unac-
ceptably slow rates on old implementations.

In addition to their general support of typical archi-
tectural features, each architecture will provide par-
ticular applications with much better support than the
others due to special architectural features.

1) The i860 provides the best graphics support with
its pixel instructions and data types.

2) The 88000 offers the best bit-manipulation sup-
port.

3) The Sparc provides the best artificial intelligence
support with its tagged arithmetic instructions.

From a system implementation point of view, the three
architectures support the basic primitives necessary to
implement a general-purpose Unix system implemen-
tation. While the primitives may be somewhat more
primitive that those in traditional CISC architectures,
they do provide the basic building blocks upon which a
Unix system can be based. In fact, since the building
blocks are relatively primitive, they avoid locking in a
particular implementation. For example, a CISC con-
text switch instruction gives an implementation the
freedom necessary to create a more optimal solution.

In considering all the factors, we find that no one of
the three architectures is clearly inferior or clearly
superior to the other architectures. A particularly bad or
a particularly good implementation of any of these
three architectures will more than make up for any
architectural differences that have been identified. $$

References
1, G.A. Blaauw, Digital System Implementation, Prentice

Hall, Englewood Cliffs, N.J., 1976, p. 2 .
2. H.S. Stone, High Performance Computer Architecture,

Addison-Wesley, Reading, Mass., 1987, pp. 1-20.
3. J.D. Foley and A. van Dam, Fundamentals of Interactive

Computer Graphics, Addison-Wesley, 1982.
4. W. Stalling, “Reduced Instruction Set Computer

Architecture,” Proc. IEEE, Vol. 7 6 , No. 1, CS Press, Los
Alamitos, Calif., Jan. 1988, pp. 38-55.

5. IBM System/370 Principles of Operation, 9th ed., Inter-
national Business Machines Corp., Poughkeepsie, N. Y .,
Oct. 1981.

6. D.J. Lilja, “Reducing the Branch Penalty in Pipelined
Processors,”Computer, Vol. 21, No. 7, July 1988, pp. 47-
55 .

7. J.A. DeRosa and H.M. Levy, “An Evaluation of Branch

August 1989 61

RISC architectures

Architectures,” P I W . 14th Ann. S j m p . Computer Arc,hi-
tectures. CS Press, June 1987, pp. 10-16.

8. D.R. Ditzel and H.R. McLellan, “Branch Folding in the
CRISP Microprocessor: Reducing Branch Delay to
Zero,” Proc. 14th Ann. Symp. Con7puterArcliitecture, CS
Press, pp. 2-9.

9. J.K.F. Lee and A.J. Smith, “Branch Prediction Strategies
and Branch Target Buffer Design,” Computer., Jan. 1984,

10. M.G.H. Katevenis, “Reduced Instruction Set Computer
Architectures.” MIT Press, Cambridge, Mass., 1985.

1 I . J. Hennessey et al., “Hardware/Software Tradeoffs for
Increased Performance,” ACM Proc. Symp. Architec-
rural Support f b r Programming Laiiguages and Operat-
ir7g Sy.stems. Mar. 1982, pp. 2-1 1.

12. C.A. Wiecek, “A Case Study of VAX-11 Instruction Set
Usage for Compiler Executions,” ACM PI.OC.. Symp.
Arc,hitectio.al Support f o r Programming L a n g i ~ i g e s urid
Operatiti,? System. Mar. 1982, pp. 177-184.

13. D.W. Clark and H.M. Levy, “Measurement and Analysis
of Instruction Use in the VAX-l1/78O,”ACM/IEEE Proc.
9th Atin. Symp. Computer Architec,ture, 1982, pp. 9- 17.

14. B.L. Peuto and L.J. Shustek, “An Instruction Timing
Model of CPU Performance,” Proc. Fourth Anti. Symp.
on Computer Arc,hitecture, Mar. 1977, pp. 165-178.

15. F. Chow and J. Hennessey, “Register Allocation by
Priority-based Coloring,” Pro?. ACM SIGPlan 84 Synip.
Compiler Construc,tion, June 1984, pp. 222-232.

16. D.W. Wall, “Register Windows vs. Register Allocation,”
Proc,. ACM SICPlan 88 Symp. Programming Language

pp. 6-22.

Desigil and Implementation. June 1988. pp. 67-78.

17. Sparc Architec,ture Manual, Sun Microsystems, Inc.,
Mountain View, Calif.. 1987.

18. D.A. Patterson and C.H. Sequin, “A VLSI RISC,” Com-
puter , Vol. 15, No. 9, Sept. 1982, pp. 8-2 1.

19. R.P. Colwell et al., “Computers , Complexity and
Controversy.” Computer, Vol. 18, No. 9, Sept. 1985, pp.

20. ANSl I lEEE Standard 754-1 985 f o r Binary Floating-
Point Arithmetic, CS Press, 1985.

2 1 . D.M. Ungar, The Design arid Einluation of a High Per-
formance Smalltalk System, MIT Press, Cambridge,
Mass., 1986.

22. W. Hollingsworth, H. Sachs, and A.J. Smith, “The Clip-
per Processor: Instruction Set Archi tecture and
Implementation,” Comm. A C M , Feb. 1989, pp. 200-2 19.

23. The Sparc Reference MMU Architecture, Rev. I .3. Sun
Microsystems, Inc., Oct. 1988.

24. i860 Programmer’s ReferenceManual, Intel Corp., Santa
Clara, Calif., Feb. 1988.

25. M88000 Architecture Specification, Motorola Corp.,
Schaumburg, I l l . , 1986.

26. M.J. Mahon et al., “Hewlett-Packard Precision Architec-
ture: The Processor,”Hewlett-PackardJ., Aug. 1986, pp.

27. “The 801 Minicomputer,” IBM J . Research andDevelop-

8- 19.

4-22.

ment, Vol. 27, May 1983, pp. 237-246.

Richard S. Piepho William S. Wu

Richard S. Piepho is a member of the technical staff at
AT&T Bell Laboratories in Naperville, Illinois. He currently
works on the development of future AT&T computer sys-
tems. His past work has included performance and architec-
tural analysis of the company’s RISC processor, Crisp, as
well as the University of California at Berkeley’s RISC I
processor.

Piepho received a BSEE from Purdue University and an
MS in computer science and electrical engineering from the
University of California at Berkeley. He is a member of the
IEEE Computer Society, Tau Beta Pi, and Eta Kappa Nu.

William S. Wu was the AT&T Bell Laboratories architect for
the 32-bit WE32200 microprocessor as well as a member of
the design team. His interests include very large scale integra-
tion architecture, interconnection networks, and multiproces-
sor architecture. Wu received a BSEE from the University of
Minnesota, an MSEE from Carnegie Mellon University, and
a PhD from the University of Michigan. He is a member of the
IEEE Computer Society, the ACM, Eta Kappa Nu, and Tau
Beta Pi.

Questions concerning this article can be addressed to Rich-
ard S. Piepho, AT&T Computer Systems, 1100 E. Warren-
ville Road, Naperville, IL 60566, or William S. Wu, AT&T
Data Systems Group, Crawfords Corner, Holmdel, NJ 07733.

Reader Interest Survey

Indicate your interest in this article by circling the
appropriate number on the Reader Service Card.

Low 156 Medium 157 High 158

62 IEEE MICRO

