
A Comparison of 
RISC Archtectures 

umerous new RISC architectures have appeared in the market- 
place over the past few months. Among these are the Intel i860, 
the Motorola 88000, and the Sun Microsystems Sparc architec- 

tures. Each claims great performance increases over the existing CISC 
architectures and superior performance and features over their RISC rivals. 

Here, we compare and analyze the relative strengths and weaknesses of 
the three architectures in a number of key architectural areas. Based on this 
comparison, we assess their advantages and disadvantages. We seek to 
determine whether one architecture is clearly superior or  inferior in the long 
term because of sufficient advantages or disadvantages i t  possesses over the 
others. 

First we discuss the relative importance of an architectural comparison, 
as opposed to a comparison of implementations, and follow i t  with a high- 
level overview of each of the architectures. We examine, in detail, each of 
the architectures on a number of key architectural areas. Finally, we 
summarize the overall relative strengths and weaknesses of each architec- 
ture. (We also explain some of the specialized architectural vocabulary in 
the accompanying Definition of Terms.) 

Architecture vs. implementation 
Various proposals for drawing the line between computer architecture 

and computer implementation have existed since the term “computer archi- 
tecture” was first used in the description of the IBM System/360. The 
original strict definition proposed by Blaauw’ limited the architecture to 
just the instruction set and execution model. All else makes up the implem- 
entation. A more-encompassing definition proposed by Stone’ sets the 
architecture as the “instruction set and structure down to the functional 
modules” of the system. Various other definitions fall between these two 
extremes. 

For our purposes, however, we adopt the original strict definition. We 
define the architecture as only software-visible features-including the 
basic instruction set and memory management architectures. It does not 
include the specification of the functional modules used to implement these 
features. 
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Byte 0 

Definition of Terms 

Byte 1 Byte 2 Byte 3 

ABI, or Unix System V application binary inter- 
face for a CPU architecture, defines a “binary” 
system interface standard. This standard supports 
compiled application programs running on com- 
puter systems that are based on the same CPU archi- 
tecture. 

An atomic instruction retains exclusive use of a 
flag (for example, a semaphore) through completion 
of the instruction cycle. Exclusive use of a flag 
prevents the flag from being modified while the 
instruction operates on it. 

Byte-ordering or addressing schemes called big 
endian and little endian set the format for sending 
data to a microcomputer. Big-endian format sends 
the most significant byte first, while little endian 
sends the least significant byte first. Figure A shows 
big-endian byte ordering for a 32-bit word; Figure B 
shows little-endian byte ordering for a 32-bit word. 

A small, high-speed cache stores the most fre- 
quently used main memory locations. It typically 
requires only one to two processor cycles to access 
as compared with 10 to 20 cycles for main memory 
access. A cache usually can hold 1 Kbyte to 5 12 
Kbytes of data. 

The cache coherency protocol lets the hardware 
(or software) ensure that only one logically correct 
value exists for each program variable. In multiproc- 
essing systems with each CPU containing a local 
cache, multiple copies of program variables can 
exist in the system. Each CPU can be attempting to 
modify and/or access its copy of the program vari- 
ables simultaneously. The program variable copies 
could then become inconsistent (with each CPU 
seeing a different value of a program variable) with- 
out some hardware and/or software ensuring that 
some form of consistency or coherency is enforced. 

CISC indicates a complex instruction set com- 
puter or computing. 

A processor’s condition codes, or information 
bits, allow the software programmer (and the hard- 
ware) to determine whether the result of a compari- 
son (or other arithmetic operation) was positive, 
negative, or zero and whether it caused an overflow. 

A graphics unit, for a given viewpoint, discards 
and does not display the nonvisible surfaces of 
objects in a scene through a process called hidden- 
surface elimination. 

A leaf procedure will not call any other proce- 
dure. 

The hardware unit or component called a memory 
management unit, or MMU, translates virtual ad- 

Figure A. Big-endian ordering for a 32-bit word. 

Byte 3 Byte 2 Byte 1 Byte 0 

Figure B. Little-endian ordering for a 32-bit word. 

dresses (those seen by software) into physical addresses 
(those seen by hardware). The hardware uses the 
memory-management translation information (page 
and segment table entries) to translate an address. It 
then stores the translation information in the TLB. (See 
TLB.) In addition, the hardware provides program 
isolation and protection (memory protection) by exam- 
ining permission data in the translation information. 

The MESI memory protocol ensures cache coher- 
ency between multiple write-back caches. Any given 
cache entry, depending on how it has been accessed, 
falls into one of four states: modified (M), exclusive 
(E), shared (S), or invalid (I). 

A page is the smallest managed unit of a virtual 
memory scheme. The system maintains separate vir- 
tual-to-physical translation information (and, in some 
cases, protection information) for each page. 

The Phong-shading graphics technique helps a 
graphics unit shade an object. The graphics unit line- 
arly interpolates the normals at the vertices of a poly- 
gon along the edges. Then it interpolates the normals at 
the edges along a scan line. At each pixel along the scan 
line, the interpolated normal is used in the lighting 
model to determine the color at that pixel. For example, 
consider the triangle with four scan lines in Figure C. 

Given the normals at vertices A, B, and C, the unit 
interpolates the normals along edges AB and AC. Then 
using the interpolated normals of the two edges at 
horizontal scan line 2 ,  the unit interpolates the normals 
along scan line 2 between the edges to calculate the 
shade for each pixel. The unit then repeats the interpo- 
lation for scan lines 3 and 4.’ 
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Figure C. A 4-scanline figure. 

In a register organization scheme called register 
windowing a group of register banks (each with, for 
example, 32 registers) is arranged as a circular buffer. 
During execution, software is only “aware” of a single 
bank, or window, of registers. Each procedure call, 
however, results in a new window of registers being 
transparently allocated to the new procedure, thereby 
eliminating the need to save registers on each proce- 
dure call. Similarly, as each procedure completes and 
returns, the system readjusts the current window back 
to the correct window. 

RISC indicates a reduced instruction set computer or 
computing. 

A semaphore is a hardwarelsoftware flag that indi- 
cates the status of an activity. Typically, it signals 
whether or not a shared resource can be accessed. A 
semaphore instruction is a special atomic instruction 
for accessing the flag. 

Smalltalk is a high-level, object-oriented program- 
ming language developed by Xerox PARC. 

A spin-on-the-lock situation occurs when a program 
is in a loop constantly testing a semaphore to see if 
access to the related resource is allowed. Here, the 
semaphore functions like a lock. 

An SPL level is a Unix interrupt level in a system that 
supports multiple levels of interrupts. A higher priority 
interrupt would logically be at a higher SPL level than 
a lower priority interrupt. Only those incoming inter- 
rupts at a higher SPL level than the current one actually 
cause an interrupt to be acknowledged by the processor. 
Raising or lowering the SPL level thereby increases or 
decreases the number of interrupts that the processor 

will acknowledge. Running at a high SPL level can 
essentially disable the processor from acknowledg- 
ing interrupts. 

Tagged arithmetic provides a primitive means of 
checking for consistency in data type thereby sup- 
porting the most frequent cases in the Smalltalk and 
Lisp languages. Many languages, including Small- 
talk and Lisp, do not provide data type declarations. 
Therefore the type (pointer, data) of a program 
variable cannot be checked until the program is 
executed. Thus the operand type (and whether they 
match or not) must be checked before performing 
arithmetic instructions. 

A test-and-set instruction typically tests a mem- 
ory location (flaghemaphore) and updates it accord- 
ing to the flag’s value. It is atomic in that after the 
flag is read and before the flag is updated, the CPU 
executing the instruction will not allow access to the 
flag. 

A graphics unit transforms a displayed wireframe 
drawing into a 3D shaded object by saving only the 
lines that form the surface of the wireframe’s poly- 
gons and then filling in (shading) between these 
lines. 

A TLB, or translation lookaside buffer, is the 
memory cache of the most recently used page table 
entries within the MMU. 

A TLB hit rate is the cache hit rate achieved in the 
TLB. It reflects the percentage of memory accesses 
whose translation information (page table entry) is 
contained in the TLB. 

Virtual memory is the memory space as under- 
stood by the software programmer. It allows each 
software application to “see” a uniform, large ad- 
dress space independent of the number of applica- 
tions running on a system or the actual size of main 
memory of that system. The MMU maps, or trans- 
lates, virtual memory into the actual (physical) 
memory of the system. 

A dynamic, RAM-resident z-buffer supports 
graphics processing. It has a one-to-one correspon- 
dence with a frame buffer. That is, each pixel in the 
frame buffer has a corresponding location in the z- 
buffer. Each z-buffer location contains the depth ( z )  
value (the pixel’s distance from the viewer) of the 
object being displayed at the corresponding pixel in 
the frame buffer. Before drawing a pixel, the graph- 
ics unit compares the z value of the object, at that 
pixel, with the value in the z-buffer. The unit updates 
the pixel only if the object is closer to the viewer than 
that indicated currently in the frame buffer. 
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Why architecture instead of implementation? The 
RISC architectures offer large performance increases 
over currently available CISC architectures. As a re- 
sult, almost every coinputer vendor evaluates the RISC 
architectures to verify performance claims and to deter- 
mine which, if any, best fits its applications and strate- 
gic directions. Unlike past chip decisions (for example. 
whether to use an 8086 or an 68000) however. selecting 
a RISC chip and breaking user software compatibility 
with current product lines now becomes a major corpo- 
rate decision. Software compatibility is increasingly 
important due to the rise of industry-standard applica- 
tion binary interfaces (ABls) .  In addition, the number 
of available user application packages continues to 
grow. As a result. changes to an architecture become 
very difficult while changes to an implementation 
become i nc re as i n g I y e as y . 

Changing an architecture. in general, implies that 
changes will have to be made to user application soft- 
ware. Since most computer vendors do not write all of 
their own applications and because of the enormous 
number of packages that would have to be updated, the 
cost of such a change is very high. In some cases 
additions to an architecture could be made in such a 
manner that existing user application software is both 
forward- and backward-compatible. In general, how- 
ever. this is not the case. and the selection of a good 
architecture is critical. 

Changes to an implementation. however. imply that 
only changes to the hardware and possibly the operat- 
ing system software will be necessary. Since vendors 
upgrade both the hardware and operating system on a 
regular basis (to include the latest chip implementa- 
tion), the added cost of changes in an implementation 
remains small in comparison to the user software 
changes. Any limitations in a given implementation can 
be (and usually are) reduced or circumvented in the 
next implementation. Therefore the selection of a RISC 
based on a given implementation is not as critical. 

Overall then. the more important selection criteria in  
selecting a RISC chip is its architecture, both the cur- 
rent and future implementations as opposed to just the 
architecture’s current implementation. 

Architecture evaluation examples. In the process 
of evaluating RISC architectures. we have seen numer- 
ous performance comparisons and architectural “evalu- 
ations” based on these comparisons. (Most have been 
conducted, i t  seems, by the companies selling one 
architecture or another.) While these evaluations have 
been extensive and have pointed out numerous poten- 
tial shortcomings, most of these evaluations compare 
specific implementations of the architectures in ques- 
tion and not the architectures themselves. As a result, 
the shortcomings tend to be characteristic of the imple- 
mentations and not the architectures. Table 1 lists some 
of the architectural shortcomings being put forth for 
each of the architectures. 

Table 1 .  
Claimed Architectural Shortcomings.  

1 Architecture Deficiency 

i860 N o  cache coherency for 
internal cache\ 

88000 No dual-cache tags 
Only supports MESI model 
of cache coherency 

No separate address adder 
Sparc Single addreddata  bus 

In each of these cases, the proclaimed architectural 
shortcoming is, in fact, a feature of the implementation 
and not a feature of the architecture. The number of 
external buses, while a major component of the per- 
formance of RISC implementations, is not a feature of 
the architecture. The number, speed, and width of 
external buses can be (and is) changed from implemen- 
tation to implementation without affecting the architec- 
ture. The support of cache coherency and the exact form 
of that support is, again, a crucial feature in the im- 
plementation of multiprocessor systems but is not a 
feature of the architecture. Cache coherency can be 
added. deleted, or changed without affecting the under- 
lying processor architecture. 

While many of the analyses being performed may 
have concentrated on specific implementations as 
opposed to the underlying architecture, we point out  
that the architectures are not without shortcomings nor 
all equal. On the contrary, the architectures, while on 
the surface quite similar, are quite different when ex- 
amined in detail. 

Overview of architectures 
The i860,88000, and Sparc are labeled and marketed 

as RISC architectures. They all satisfy the key aspects 
of RISC design“ and share some “prominent” RISC 
characteristics. These shared key characteristics are: 

single-cycle execution (for most instructions), 
simple load/store interface to memory, 
register-based execution, 
simple fixed-format and fixed-length instructions, 
simple addressing modes, 
large register set or register windows, and 
delayed branch instructions. 

For some particular target markets, the vendors have 
also added sets of instructions that are not frequently 
used in general-purpose computing. For example, the 
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i860 provides a set of graphics and vector instructions, 
the 88000 offers an extensive set of bit-field instruc- 
tions, and the Sparc includes instructions on tagged 
data. Probably, to some RISC purists/minimalists, the 
addition of such seemingly extraneous instruction sets 
disqualifies their classification as RISC architectures. 
However, in our opinion, the key point of RISC is the 
design philosophy of simplicity and efficiency. That is, 
RISC affords an efficient use of hardware resources via 
judicious simplification of the semantics of a proces- 
sor’s instruction set and encoding of the instruction set. 
These special instructions do not preclude the three 
architectures from being classified as RISC architec- 
tures. 

To avoid a proliferation of memory management 
architectures, each of the architectures also includes a 
memory management definition. 

Architectural comparison 
In examining the architectures of the i860, 88000, 

miscellaneous instructions, 
branches, 
memory operands and addressing modes, 
registers, 
data types and alignment, 
floating-point units, and 
memory management. 

Miscellaneous instructions. In addition to the stan- 
dard set of RISC instructions, each architecture in- 
cludes fairly unique (at least for RISC architectures) 
instructions targeted for specific applications. The 
special is60 instructions support graphics processing 
as well as parallel operation of the integer and floating- 
point units. The graphics processing instructions in- 
clude an extensive set of both pipelined and nonpipe- 
lined instructions, which support z-buffer operations, 
Phong shading, and pixel arithmetic. These capabilities 
provide superior support in graphics applications that 
perform hidden-surface elimination and 3D shading. 
However, since these instructions use the software- 
visible floating-point pipeline, their use is limited to 
libraries and specially coded routines. (We discuss this 
aspect further later.) For applications outside of the 
graphics area, these capabilities will not provide any 
measurable benefits. 

The i860 also supports the parallel initiation of the 
integer and floating-point units via the dual-instruc- 
tion-mode prefix. Use of this prefix causes the next two 
instructions to be initiated in parallel (assuming that 
one is an integer instruction and one is a floating-point 
instruction). For general-purpose applications, which 
typically perform few floating-point operations, the 
addition of such parallelism does not provide any sig- 

and Sparc, we look closely at the following areas: 

nificant benefit. Alternatively, for those applications 
that perform extensive floating-point operations, such 
parallelism provides a significant performance im- 
provement. However, since the compiler must generate 
different code to take advantage of the parallelism (and 
the current compiler does not), it is unclear whether 
high-level-language programs will be able to make use 
of this capability. To the extent that an application’s 
key routines and libraries can be written in assembly 
language, much of the performance improvement can 
be achieved. 

The unique 88000 instructions are an extensive set of 
bit-field instructions. They provide the capability to 
set/clear and extracthnsert values into bit fields of 
variable length and position. (Further discussion ap- 
pears later.) 

The unique Sparc instructions support tagged arith- 
metic. They provide the capability to tag data and 
pointers differently so that detection of illegal opera- 
tions on the data or pointers can be detected. (We 
discuss this further later.) 

Semaphores. The three architectures support some 
kind of semaphore or atomic test-and-set type of in- 
struction. Semaphore instructions are an increasingly 
important part of the architecture due to the increase in 
the number of shared-memory multiprocessing sys- 
tems being developed. Such systems require sema- 
phores to ensure that the multiple processors of the 
system modify system data structures in a consistent 
manner. 

The i860 supports a general Lock and Unlock in- 
struction pair, which causes the processor to run all of 
the instructions between them in an atomic manner with 
interrupts blocked. (Note that the hardware enforces a 
limit of 32 such instructions.) 

The 88000 supports the XMEM instruction, which 
loads a memory location, tests it for 0, and if a 0 is 
detected, stores the specified register contents into the 
memory location. The load/stores are indivisible on the 
bus. 

The Sparc architecture supports two types of sema- 
phore instructions (though early implementations only 
support one). The Load-Store Unsigned Byte instruc- 
tion reads a memory location and then writes that 
memory location to all 1s in an atomic manner. The 
Swap instruction causes a memory location to be read 
and then replaced with the contents of a specified 
register. 

In comparison, it would appear that the i860 Lock/ 
Unlock mechanism provides better support for such 
things as counting semaphores. However, in fact, the 
actual number of instructions required to implement 
such a construct (and therefore the speed to execute it) 
is approximately the same for all three architectures. 
Both general mechanisms, the Sparc/88000 and the 
i860, require multiple instructions to obtain a lock, 
increment or decrement the semaphore, and then re- 
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lease the lock. None of the three architectures provides 
a single-instruction implementation as in the IBM 
S/370.5 

Two potential, but small, benefits of the i860 mecha- 
nism in an application using the Unix operating system 
exist. One is its ability to spin on the lock at a low SPL 
level (interrupt level), and the other is its ability to 
perform short semaphore or other operations without 
raising the SPL level at all. In the first case, the Unix 
kernel requires that the SPL level be raised before 
attempting to obtain a lock that could also be required 
at a higher interrupt level. This requirement normally 
means that software on a processor such as the 88000 or 
Sparc must raise the SPL level to ensure that it does not 
get interrupted after obtaining the lock. (If it were 
interrupted, a deadlock situation could arise.) How- 
ever, since the i860 Lock/Unlock mechanism blocks 
interrupts, the SPL level does not have to be raised until 
the lock has been successfully obtained. In addition, if 
the work performed on the semaphore or the desired 
code is short enough (less than 32 instructions), the 
i860 mechanism allows the software to keep the SPL 
level the same. In total, however, both of these benefits 
are small and not of sufficient size to consider further. 

Multiplyldivide. Of the three architectures, only the 
88000 provides both of the basic integer multiply and 
divide instructions. The i860 architecture supplies a 
multiply operation via its FMLOW floating-point op- 
eration but provides a library routine for division. The 
Sparc architecture, alternatively, provides a Multiply 
Step instruction and library routines to implement both 
multiply and divide operations. The lack of these in- 
structions constrains the i860 and Sparc architectures 
in measurably increasing multiplication and division 
performance by using any hardware available in future 
implementations. As such, i860 and Sparc implementa- 
tion performance will suffer on applications that re- 
quire extensive multiplication and division operations 
unless vendors add the basic multiply and divide in- 
structions to the architecture. 

Branches. The three architectures have the concept 
of a delayed branch. Here the instruction sequentially 
following the branch executes independently of 
whether the branch is or is not taken. This feature 
increases performance of pipeline implementations by 
reducing the flushing effect of branches on the pipeline. 
Studies have indicated that this technique is successful 
in eliminating the branch penalty in 60-70 percent of 
the cases.6 

In addition, the three architectures have the ability to 
essentially annul the execution of the instruction in the 
delay slot. This provision eliminates the potential in- 
crease in code size identified after having to fill the 
delay slot with a NO-OP instruction. Avoiding this 
increase reduces the factor by which the RISC code size 
will increase over a traditional CISC architecture.' 

None of the three architectures incorporates branch 
prediction in the instruction set as in the AT&T Crisp8 
architecture. Such software prediction would reduce 
the branch penalty. However, all of the architectures 
could adopt any one of the many hardware branch- 
prediction strategies for a particular irnplementati~n.~ 
While studies have shown that software branch predic- 
tion may be more cost effective to implement, the 
hardware schemes are not excessively expensive and 
do provide very good branch predi~ t ion .~  

Additional comparison and looping support. In 
addition to the usual branch instructions, the i860 
architecture provides additional support for those loop 
operations that terminate with a comparison against 0 
via the BLA (branch on loop condition code and add) 
instruction. This single instruction decrements a 
counter, compares it to 0, and then branches on that 
comparison-all in one cycle. 

In comparison, the 88000 and Sparc architectures 
require two instructions (and two cycles) to implement 
the same functionality. In the 88000 architecture the 
first instruction decrements the counter. Meanwhile the 
second instruction compares the result against 0 (creat- 
ing an intermediate set of condition codes) and exe- 
cutes the branch operation. In the Sparc architecture the 
first instruction decrements the counter (and sets the 
condition codes). The second instruction executes the 
branch operation (based on the condition codes). 

However for loops not terminated by a test against 0, 
all three architectures require a total of three instruc- 
tions to perform the decrement, comparison, and branch 
operations. Studies have shown that while loops with a 
termination of 0 are common, they are not the predomi- 
nant case." Therefore though the i860 provides better 
performance in this case, the total performance im- 
provement overall will not be large. 

Condition codes. The three architectures support 
condition codes on which some or all of their branch 
instructions perform a test. 

The i860 provides both the traditional condition- 
code approach and the loop cbntrol instruction just 
described, which uses a separate condition code. Un- 
like the Sparc and 88000, however, the i860 arithmetic 
instructions always set the condition codes. This speci- 
fication makes the implementation of more compli- 
cated pipeline schemes supporting out-of-order execu- 
tion and multiple-instruction executions per cycle more 
difficult to implement. 

The 88000 architecture departs from the traditional 
approach of condition codes held in the processor status 
word. Instead it writes status information resulting 
from a Compare operation in a general register speci- 
fied in the Compare instruction. Conditional branch in- 
structions correspondingly test the specified general 
register to determine whether the branch operation 
should proceed. Given that no separate condition codes 
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offset mode is irrelevant. However, support of the 
signed immediate mode provides some extra flexibility 
over the unsigned immediate mode. 

In the immediate mode, the i860 architecture sup- 
ports the 16-bit signed immediate form for arithmetic 
operation and 16-bit unsigned immediate form for 
logical operation. The 88000 architecture supports the 
16-bit unsigned immediate form. The Sparc architec- 
ture supports only the 13-bit signed immediate form. 
Given that long immediate modes are rarely used, the 
difference in the length of immediate modes is irrele- 
vant. However, the support of the signed immediate 
mode provides some extra flexibility over the unsigned 
immediate mode. 

It is interesting to note that the above addressing 
modes are also the five most frequently used addressing 
modes in CISC machines.'** I 3  In fact, the least fre- 
quently used address mode of the five, register indirect 
with index, has a frequency of only 6 percent.I3 

The 88000 also supports index mode with scaling. 
This addressing mode simplifies index computation for 
accessing halfword arrays as well as word arrays. The 
addressing mode is useful for artificial intelligence 
languages and scientific computing. However, it will 
have a low frequency of usage in a general-purpose 
computing environment. Hence, little performance 
gain will be seen. 

To eliminate the requirement of an additional read 
port to its register file, the i860 memory store instruc- 
tion does not support the use of register indirect with 
index mode. This absence of support introduces asym- 
metry to the instruction set and hence an exception to 
the compiler. However, based on a CISC-machine 
study,I4 less that 4 percent of the second operand and 
the destination operand in a triadic operation use the 
address mode. Therefore, we see very little perform- 
ance impact for the lack of it. For floating-point vector- 
processing performance, the i860 supports the autoin- 
crement mode for constant stride vector addressing. 
Since very little floating-point vector processing oc- 
curs in general-purpose computing, we again see very 
little performance impact. 

Five different 
addressing modes can 

be synthesized by 
each architecture. 

exist, future implementations of the architecture will 
more easily employ complicated pipelining schemes 
supporting out-of-order execution and multiple instruc- 
tion execution per cycle. 

The Sparc architecture allows many instructions to 
set the condition codes. In addition it provides an 
explicit Compare instruction and all of its branch in- 
structions test the condition codes. Arithmetic instruc- 
tions can optionally set the condition codes or leave 
them unaffected. These provisions will enable future 
implementations of the architecture to more easily 
employ the same pipelining schemes as described for 
the 88000. 

While the traditional method has offered separate 
condition codes, arguments have been put forth against 
condition codes. They add difficulties to the hardware 
design and result in an unorthogonal instruction set. 
The 88000 addressed certain concerns" by having the 
condition-code bits stored in any specified register, as 
described earlier. This requirement minimized any 
hardware implementation problems and facilitated the 
hardware support of parallel integer and floating-point 
operations. It also effectively eliminated yet another of 
the few registers that are available to the user. How- 
ever, given the magnitude of the difficulties associated 
with using condition codes, any additional hardware 
that may be required would be small. 

Addressing modes. The three architectures share 
two basic addressing modes for operand access. They 
are base + offset and base + index. With register 0 
returning 0 all the time, five different addressing modes 
can actually be synthesized. They are: 

register: Rx, where x is the register number; 
register indirect: (Rx), where x is the register 

register indirect with index: (Rx, Ry), where x and 

register indirect with immediate offset: offset(&), 

immediate, signed and unsigned. 
In the register indirect with immediate offset mode, 

the i860,88000, and Sparc support 16-bit signed offset, 
16-bit unsigned offset, and 13-bit signed offset forms, 
respectively. Given that long immediate offset mode is 
rarely used, the difference in the length of immediate 

number; 

y are the register numbers; 

where x is the register number; and 

Control-transfer address. All three architectures 
provide two addressing methods for control-transfer 
operations, PC-relative and register indirect. For PC- 
relative conditional transfer, the i860 provides 16-bit 
and 26-bit offset modes, the 88000 provides 16-bit 
offset, and the Sparc provides 22-bit offset. The i860 
offers a better range for PC-relative transfers. How- 
ever, based on the previously mentioned CISC-ma- 
chine study, a 16-bit offset mode sufficiently processes 
93 percent of PC-relative branches. A 15-bit offset 
mode is sufficient for 87 percent of PC-relative 
branches.I4 

Given the code expansion due to the RISC architec- 
ture and the trend in program-size growth, a 16-bit 
offset mode will probably be good for close to 87 
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All three architectures 
provide more registers than 

their ClSC forebears. 

percent of all PC-relative branches. Since 15-20 per- 
cent of the instructions executed are nonprocedure call- 
related, PC-relative control-transfers, only 2 percent 
additional branches are needed to reach the branch 
target. The penalty of a shorter 16-bit offset mode is 
insignificant. 

For unconditional transfer and procedure call or 
return, the three architectures provide both register 
indirect and PC-relative addressing modes. 

Registers. The number of application-usable regis- 
ters becomes a key factor in the performance of RISC 
processors, given the relative performance penalties 
associated with accessing variables in cache and/or 
main memory. This factor and the increasingly sophis- 
ticated register-allocation schemes of today's compil- 
ers form the primary driving forces behind incorporat- 
ing a larger set of registers into the architectures of 
current processors.". In this area, all three of the 
architectures provide substantially more registers than 
their CISC forebears. However, the registers differ in 
the way they are used and the number that are available. 

The 88000 is the weakest in this area with only thirty- 
two 32-bit registers for both integer and floating-point 
operations. Given that each floating-point operand 
typically takes two registers, the effective number of 
values that can be contained in the register file is much 
less than 32. In comparison, the i860 and Sparc with 
thirty-two 32-bit integer registers and an additional 
thirty-two 32-bit floating-point registers can hold a 
substantially larger number of values in the register 
file. Studies have indicated that this increased number 
of registers should result in better performance for the 
i860 and the  spar^.'^ 

In addition to the 32 integer registers directly ad- 
dressable via the instruction set, the Sparc architecture 
also supports a register-windowing system. This sys- 
tem provides between two and 32 windows of registers 
arranged as a circular buffer. (For a detailed explana- 
tion see the Sparc Architecture Manual and Patterson 
and Sequin.", '*) 

Proponents of this and similar register-windowing 
schemes argue that the windowing provides a number 
of benefits. Among them are: 

1 )  The compiler does not have to savehestore regis- 
ters across function calls, thereby increasing the speed 
of the function calls. 

2) The compiler does not have to be as complex 

because it does not have to perform sophisticated reg- 
ister allocation. 

3) The windowing system provides a mechanism 
for providing an increased number of windows in a user 
software-transparent manner. 

Meanwhile, detractors argue that windowing has 
potential drawbacks: 

1) The overflow or underflow of the circular buffer 
(running out of usable windows) requires that some 
portion of the windows must be flushed or filled. 

2) Context switches now involve the savehestore 
function of significantly more registers than in the 
traditional case. 

The exact value of a register-windowing scheme 
(such as that supported by Sparc) in comparison with 
the use of sophisticated register-allocation techniques 
(such as those used by the i860 and 88000) has been the 
subject of several investigations.16, 17, I 9  The studies 
show that the relative performance of the two options is 
essentially equal and that the register-windowing 
scheme provides better performance in some cases. 

The relative disadvantages of the register-window- 
ing scheme turn out to be few because the frequency of 
overflows/underflows and context switches is small in 
comparison with the frequency of procedure calls. 
However, not all cases achieved the relative advantages 
of the register-windowing scheme due to the newer, 
sophisticated approaches to register allocation that take 
advantage of program characteristics (such as the high 
percentage of time spent in leaf procedures). 

In addition to these architectural aspects, a major 
contention of the proponents of register allocation is 
that the implementation of a register window-based 
architecture will suffer from having to support the 
register windows. In particular, they point out that the 
frequencies of two implementations (one having regis- 
ter windows and one having a typical register file) will 
not be the same given equal technology because the 
register windows will require additional logic in the 
critical path. While this contention has yet to be proven 
(current Sparc implementations run at frequencies just 
as fast or faster than the i860 and 88000 frequencies), 
it could affect certain implementations. However, 
architectures with register-windowing schemes can 
support any number of windows including one (same as 
the register allocation approach) or two (depending on 
the exact implementation, for example, Sparc requires 
two). Any negative effects of windowing in such an 
implementation could be reduced or eliminated as 
necessary by reducing the window count to a low level. 
(Though any "old" code, presumably compiled without 
sophisticated register allocation, would run poorly in 
such an implementation.) 

Byte ordering. The i860 and the 88000 support byte- 
ordering formats called big endian and little endian. 
The Sparc supports the big-endian format. The selec- 
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tion of the byte-ordering method becomes a data- 
compatibility issue with existing architectures. The 
Sparc architecture originated at Sun Microsystems Inc., 
where most of the products are Motorola 680x0-based 
(big-endian byte order). Big-endian format thus be- 
comes the logical choice. Similarly, the Intel 80x86 
line supports the little-endian format, a logical choice 
therefore for the i860. 

The i860 and 88000 support both byte orderings 
statically. As a result, data can be exchanged with a big- 
endian machine or a little-endian machine without 
reversing the bytes or changing the byte numbering. 
Thus, the i860 and 88000 provide a migration path for 
data and databases generated from machines of either 
byte orderings. However, the 88000 AB1 specifies the 
big-endian format (Motorola's 680x0 format) for inter- 
facing to the operating system. Any application run- 
ning in little-endian byte order must somehow swap the 
bytes to interface to the operating system. It is not yet 
clear what byte order the i860 AB1 will specify. How- 
ever, to maintain some sort of data compatibility with 
the Intel 80486 line, the i860 AB1 will probably adopt 
the little-endian format. Again, any application run- 
ning in big-endian byte order must somehow swap the 
bytes to interface to the operating system. 

Note also that none of the three architectures pro- 
vides a complete data-compatibility solution. The 
majority of the existing machines supports arbitrary 
byte alignment for data, whereas all three architectures 
do not. Considering the cost of breaking instruction 
compatibility (migrating from CISC to RISC), the data 
incompatibility issue is minor. 

Data types. The three architectures supply the usual 
set of integer data types, namely, byte, unsigned byte, 
halfword, unsigned halfword, word, and unsigned 
word. 

The three architectures also supply the usual set of 
ANSI/IEEE floating-point data types, namely, single- 
precision and double-precision.20 In addition, the Sparc 
supports extended-precision floating-point operations, 
giving it an edge for applications requiring additional 
precision. While current language standards do not 
support extended-precision floating-point data, note 
that as RISC implementations approach mainframe 
performance the demand for extended-precision 
floating-point data will increase. 

For different target markets, the three architectures 
support additional data types. The i860 supports 8-bit, 
16-bit, and 32-bit pixels to provide high-performance 
3D graphics processing. The 88000 supports bit-field 
data. However, it is limited to data within a word. It has 
a much narrower range of applications than the 
Motorola 68020 bit-field instructions that operate 
across word boundaries. The Sparc supports tagged 
data. The support of this data type has been shown to 
provide a 10-25 percent execution-time savings for 
systems using dynamic data typing, for example, Small- 

talk." Since these special data types are really targeted 
for specific applications, the support of such data types 
and related operations will not have any performance 
impact on general-purpose computing. 

Floating-point arithmetic. The three architectures 
support the ANSIIIEEE Standard 754-1 985 for Binary 
Floating-point Arithmeticzo through different levels 
and mixes of hardware and software emulations. They 
supply the usual set of floating-point instructions, 
namely, load/store, integer to floating point, floating 
point to integer, add, subtract, multiply, and compare. 

The Sparc and the 88000 supply division and square- 
root instructions, whereas the i860 supports the divi- 
sion and square-root functions via reciprocals, a similar 
approach taken by Cray supercomputers. Here, a 
Newton-Raphson iterative sequence using the multiply 
and reciprocal instructions performs a division or 
square-root operation. As a result, i860 implementa- 
tions will suffer on those applications that require 
extensive division and square-root operations. How- 
ever, in general, these operations have low usage fre- 
quencies. Measurements taken from an execution of the 
SPICE circuit simulator on an MOS memory cell cir- 
cuit show that floating-point arithmetic occurs only 12 
percent of the overall time.2z Out of that 12 percent, 
division occurs only 9 percent of the time. In other 
words, the overall usage is 1 percent. 

The i860 floating-point architecture supports both 
scalar and pipelined modes. However, the pipelines are 
exposed. This means that either software compatibility 
may have to be broken in the future or a restriction be 
placed on future implementations. 

The i860 also has a set of instructions that can initiate 
an addhubtract and a multiplication, and control the 
data paths between the adder and the multiplier pipe- 
lines. Vector operations, like multiply and accumulate, 
can be synthesized (by controlling the data paths ac- 
cordingly) and be speeded up considerably. However, 
it is questionable how well a compiler can vectorize and 
make use of the exposed pipeline. To take full advan- 
tage of the vector processing, an application program- 
mer will probably have to make calls to a hand-coded 
library of vector-processing routines. Again, the i860 
vector/pipeline operations are useful for a particular 
market, and we see little vectorizing/performance for 
general-purpose use. 

Memory management. The three architectures 
support fairly traditional memory management archi- 
tectures though each provides additional support in 
many crucial areas. All three architectures support a 
full 4-Gbyte virtual address s p a ~ e . ~ ~ - * ~  While this space 
will be sufficient in the near term, all three will have to 
deal with larger virtual address spaces in the longer 
term (a la HP Spectrumz6 and IBM 801 and PC RTZ7). In 
all three cases, retaining compatibility will be a major 
architectural challenge. 
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The i860 supplies a 4-Gbyte physical address spec- 
trum, while the 88000 supports an 8-Gbyte spectrum 
and the Sparc supports a 64-Gbyte spectrum. The i860 
and Sparc share their respective address spaces be- 
tween the user and the operating system with the exact 
boundary not being fixed in hardware. Alternatively, 
the 88000 hardware divides the 8-Gbyte space into 4 
Gbytes reserved for the operating system and 4 Gbytes 
for the user. The ability to directly address spaces of 
greater than 4 Gbytes will become increasingly impor- 
tant in future systems with multi-gigabyte main memo- 
ries and with 32-bit, direct-addressed input/output 
buses. Sparc sufficiently addresses this need with its 
64-Gbyte address space, while both the 88000 and i860 
restrict space to more traditionally sized physical ad- 
dress spectrums. Fortunately, both the i860 and 88000 
have reserved bits in their page table entries. These bits 
could be used to increase their physical address spec- 
trum in the future. 

The 88000 and the i860 support two levels of address 
translation while the Sparc supports three-level transla- 
tion. Theoretically, the two-level translation will re- 
duce the time to translate the virtual address into a 
physical address when the translation cache or the 
lookaside buffer does not contain the translation infor- 
mation. However, the overall effect is small due to the 
high TLB hit rates. A detrimental effect of only having 
two levels of translation, on the other hand, is the 
overhead (in terms of the number of pages required) 
encountered to map the large, sparse address spaces of 
processes in the Unix operating system. The adoption 
of Unix System V Release 4.0 along with the increased 
number of logical segments used in applications (shared 
libraries, mapped files, etc.) makes it increasingly 
important to reduce the overhead of the page tables 
associated with each process. 

All of the architectures support a 4-Kbyte page size. 
While larger than many page sizes in traditional CISC 
architectures, the increased size of applications (as well 
as the increased size of RISC-executable files) justifies 
the use of a large page size. Even larger page sizes 
(more than 4 Kbytes) are good for systems with a large 
amount of memory and running relatively few large 
applications (workstations). They are not suitable for 
systems with a small amount of memory and running 
numerous small applications. For a system with a fixed 
amount of memory, for instance 8 Mbytes, a 4-Kbyte 
page size results in a “pool” of 2,000 pages. An 8-Kbyte 
page size results in a pool of only 1,000 pages. For 
applications with a large number of small processes, 
higher performance will be achieved with systems 
holding 2,000 pages in the pool rather than 1,000. 

Given the small number of TLB entries available in 
the microprocessor implementations of these architec- 
tures, only a small amount of virtual address space can 
be mapped without incurring TLB miss penalties. If 
only pages are supported in a memory management 
architecture, a typical TLB implementation with 64 

entries will map only 64 X 4 Kbytes, or 256 Kbytes of 
memory. While such a mapping size is sufficient for 
most user applications with their high degree of local- 
ity, it is not enough for large applications or the Unix 
kernel, which exhibit a very low degree of locality. 
Therefore, support of some larger form of mapping, for 
example, segments, is required to provide sufficient 
performance. In addition, such large mappings require 
large, continuous pieces of physical memory. Many 
applications such as the Unix kernel really use only a 
portion of multiple mappings (for text and stack). 
Therefore, it is important that the mappings not be too 
large to minimize the wastage of physical memory. 
(Though some of it can be effectively used by double- 
mapping this area of physical memory.) 

Both the Sparc and 88000 architectures support such 
a larger mapping. The 88000 supports 4-Mbyte map- 
pings with the option to individually enable or disable 
256-Kbyte “chunks” of that mapping. The Sparc, alter- 
natively, supports 256-Kbyte, 16-Mbyte, and 4-Gbyte 
mappings. The ability of both architectures to effec- 
tively map 256-Kbyte pieces of the address space suf- 
ficiently addresses the problem of the low locality and 
at the same time minimizes the wastage of physical 
memory. 

The i860, however, does not support any form of 
larger mappings. This deficiency will result in a much 
lower effective TLB hit rate, which could severely 
impact overall system performance in some applica- 
tions. Support of some kind of large mapping facility 
could be added, however, since this feature is typically 
not visible to the user and is hidden by the kernel (the 
virtual memory subsystem in Unix V Release 4.0). 
Also, the most crucial application of the larger mapping 
appears for the kernel when a change from pages to a 
larger mapping would be entirely invisible to the user. 

The three architectures provide the minimum user/ 
kernel and read/write protections. Sparc, in addition to 
these minimum permissions, also offers a limited 
combination of Execute permissions. The addition of 
Execute permissions provides Sparc with capabilities 
that will be useful in dealing with such things as 
dynamic shared libraries. 

Overall, the i860, 88000, and Sparc memory man- 
agement architectures provide essentially equal capa- 
bilities with the exception of the lack of large mapping 
support in the i860. The Sparc architecture offers the 
most flexibility and possibilities for future growth. But 
all three architectures will require significant upgrades 
when virtual address spaces of greater than 4 Gbytes 
become important. 

n summary, examination of the various components 
of the overall architectures reveals that each have I some areas that offer better support than the others 

and some areas that provide worse support. Table 2 
summarizes the assessments of the various components 
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Table 2. 
Relative Architecture Support. 

Area 

General 
Unique instructions 
Semaphores 
Multipl yldivide 

Branches 
Addressing modes 
Registers 
Data types 
Floating-point 
functions 

Memory management 

i860 88000 Sparc 

of the architectures that we examined, the i860, the 
88000, and the Sparc. For each of the components in the 
table, we indicate whether we found that the architec- 
ture was slightly inferior with respect to the others (I), 
essentially equal to the others (=), or slightly superior 
to the others(>). 

The i860 architecture is weaker in the floating-point 
area because of the software-visible pipelines, in the 
memory management area because of its lack of sup- 
port of a large memory mapping, and in the higher math 
area due to its lack of a full divide instruction. How- 
ever, the 860  architecture is stronger in the branch area 
because of its loop control support instruction. The 
88000 architecture is weaker in the area of registers 
because of the smaller number of registers that the 
architecture supports. The Sparc architecture is weaker 
in the area of higher math functions due to its lack of 
support for full multiply and divide instructions. 
However, the Sparc architecture is stronger in the 
memory management area because of its more flexible 
MMU, or memory management unit, and additional 
page permissions. 

Of the relative weaknesses that were identified, they 
vary in how difficult they would be to change. The lack 
of a large mapping in the i860 could be remedied by the 
addition of such a construct to the MMU. Since this 
construct will most importantly be used by the kernel, 
its addition could be made entirely user-software trans- 
parent. The software visibility of the floating-point 
pipelines in the i860, alternatively, most likely cannot 
be addressed without significantly breaking software 
compatibility. As in the Sparc case, the addition of a 
full divide instruction could be added fairly easily. 

The number of registers supported in the 88000 
architecture would be very difficult, if not impossible, 

to increase because of the lack of extra, unallocated, 
bits within the instruction encodings. The lack of full 
multiply and divide instructions in the Sparc architec- 
ture could be fairly easily addressed using an available 
free opcode number. Such a change could provide both 
forward and backward software compatibility (assum- 
ing the old implementations trapped onto the new 
instruction). However, new code would run at unac- 
ceptably slow rates on old implementations. 

In addition to their general support of typical archi- 
tectural features, each architecture will provide par- 
ticular applications with much better support than the 
others due to special architectural features. 

1) The i860 provides the best graphics support with 
its pixel instructions and data types. 

2) The 88000 offers the best bit-manipulation sup- 
port. 

3) The Sparc provides the best artificial intelligence 
support with its tagged arithmetic instructions. 

From a system implementation point of view, the three 
architectures support the basic primitives necessary to 
implement a general-purpose Unix system implemen- 
tation. While the primitives may be somewhat more 
primitive that those in traditional CISC architectures, 
they do provide the basic building blocks upon which a 
Unix system can be based. In fact, since the building 
blocks are relatively primitive, they avoid locking in a 
particular implementation. For example, a CISC con- 
text switch instruction gives an implementation the 
freedom necessary to create a more optimal solution. 

In considering all the factors, we find that no one of 
the three architectures is clearly inferior or clearly 
superior to the other architectures. A particularly bad or 
a particularly good implementation of any of these 
three architectures will more than make up for any 
architectural differences that have been identified. $$ 
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